

Governing AI in education: Policy opportunities for building participatory and equitable futures

Professor Kalervo N. Gulson, Associate Professor Simon Knight,
Dr José-Miguel Bello y Villarino, Penny Robin Vlies, Xiaonan Huang, Professor
Kirsty Kitto, Professor Leslie Loble AM, Dr Teresa Swist, Dr Bronwyn Cumbo

February 2026

Contents

Executive summary	5
Policy opportunities – at a glance	6
The growth of AI in education	7
The challenges of using AI in education	11
Participatory methods to inform the use of AI in education	14
A policy agenda for Australia	20
Conclusion	25
Annex A Participatory method tools	26

Acknowledgment of Country

The Australian Public Policy Institute acknowledges the Gadigal people of the Eora Nation and the Ngunnawal people upon whose ancestral lands our Institute stands.

We pay respect to Elders both past and present, acknowledging them as the traditional custodians of knowledge for these lands. We celebrate the diversity of Aboriginal peoples and their ongoing cultures and connections to the lands and waters of NSW.

About the APPI Policy Challenge Grant

The Australian Public Policy Institute (APPI) is a unique joint-venture between government and a coalition of universities dedicated to public benefit research. Established in 2021 as the James Martin Institute for Public Policy, APPI is a formal partner of government and works closely with government ministers, departments, and other decision-makers to help address their most pressing policy priorities, mobilising a wide range of expert advice across the university sector.

The Institute is an independent, non-partisan policy institute with charitable status. This paper was made possible through an APPI Policy Challenge Grant. This annual grant program supports academics who seek to tackle the greatest public policy challenges facing Australia.

About the authors

Professor Kalervo N. Gulson is a Professor of Education Policy at the University of Sydney. His current research examines the impact of AI on governing and education.

Associate Professor Simon Knight is an Associate Professor at the University of Technology Sydney, Transdisciplinary School, and a member of the UTS Centre for Research on Education in a Digital Society (UTS:CREDS). His research investigates how people learn to navigate contested issues including those relating to AI governance.

Dr José-Miguel Bello y Villarino is a Senior Research Fellow at the Law School of the University of Sydney and an ARC Early Career Industry Fellow. His research focuses on comparative approaches to the regulation of the use of AI, especially within the public sector.

Penny Robin Vlies is an educator and PhD candidate at the University of Sydney. Her research explores how the school curriculum shapes access to knowledge, power and identity.

Xiaonan Huang is a PhD candidate at the University of Sydney. Her research explores EdTech imaginaries of personalisation and their implications for educational governance.

Professor Kirsty Kitto is a Professor at the Centre for the Science of Learning & Technology (SLATE) at the University of Bergen, and an Honorary Professor at the Connected Intelligence Centre (CIC) in the University of Technology Sydney. Her research investigates cognition and learning in complex socio-technical systems.

Professor Leslie Loble AM is Industry Professor, AI and Education at the University of Technology Sydney and Chair of the Australian Network for Quality Digital Education.

Dr Teresa Swist is an independent researcher and co-founder of the Education Futures Studio at the University of Sydney. Her research focuses on participatory methodologies, knowledge practices and emerging technologies.

Dr Bronwyn Cumbo is a Lecturer at the UTS Transdisciplinary School. Her research examines the digital-environmental transitions and participatory methods that enable industry, government and community actors to collectively design sustainable digital futures in Australia.

Acknowledgements

Thank you to colleagues from the Australian Public Policy Institute for sharing insights throughout the project. This paper draws from two workshops held at the University of Sydney on 19 March and 21 October 2024. We would like to thank all participants for their time and expertise. Without their contributions, this exploration of participatory models of governance would not have been possible. Aspects of this report was supported by funding from the Australian Research Council (Funding ID: DP240100602) and contributions from associated researchers, Sam Sellar (Adelaide University), Marcia McKenzie (University of Melbourne) and Greg Thompson (Australian Catholic University).

This report, however, remains the responsibility of the authors and does not reflect the views of the participating organisations or individuals.

- Australian Education Research Organisation
- Australian Institute for Teaching and School Leadership
- Education Services Australia
- Moodle
- NSW Secondary Principals' Council
- NSW Teachers Federation
- Narelle Roberts
- Kimberley Scott

Cover image credit: AdobeStock #1576633349 | Report image credit: AdobeStock #1537677605 and AdobeStock #4586271854

Authorship

The findings and policy insights of any APPI publication are solely those of its authors, and do not necessarily reflect the views of the Institute, its Board, funders, advisers, or other partners.

This report is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).

For further information, contact Professor Kalervo Gulson, University of Sydney at kalervo.gulson@sydney.edu.au.

Recommended citation: Kalervo Gulson, Simon Knight et al. "Governing AI in education: Policy opportunities for building participatory and equitable futures", APPI Policy Insights Paper (2025).

Executive summary

Artificial intelligence (AI) is rapidly transforming educational systems, offering the potential to personalise learning, improve administrative efficiency, and enhance decision-making. Yet, without appropriate governance, AI risks reinforcing existing patterns of educational inequity.¹

This research explored how a collaborative governance model could address two persistent challenges in the use of AI in education settings in NSW and wider Australia. The first challenge is that AI innovation in education has grown rapidly, typically resulting in reactive, rather than anticipatory policymaking. A second challenge is that the narrow reliance on technical expertise to identify harms and educational impacts has overlooked critical insights from educators, students and communities.² This is particularly acute in the case of children and young people who are most affected but play a limited role in policy formation.

To explore solutions, a study was conducted within the NSW EdTech ecosystem, testing two participatory methods to inform AI policy in school education. Research participants, including students, teachers, policymakers, and technologists, reported that participatory processes enhanced their understanding of AI, enabled proactive responses to risks, and fostered greater inclusivity in policy dialogue. Student contributions in those processes reshaped adult assumptions and reframed equity concerns in concrete, context-sensitive ways.

To ensure AI supports educational outcomes and equity together, these key findings have been translated into policy opportunities for the government to improve governance, strengthen oversight and develop policy capability.

Policy opportunities - at a glance

1

Build participatory, multilevel AI governance models

Establish AI governance frameworks that connect classrooms, schools, and state-level decision-making. This will facilitate local insights to inform system-wide policy while central frameworks support school-level adaptation.

2

Operationalise local engagement to identify AI risks and benefits

Develop practical mechanisms such as participatory audits, regional roundtables, and risk-opportunity dashboards to identify issues early in schools and communities. These processes can act as an early warning system and ensure AI adoption is equitable and context sensitive.

3

Establish a permanent Advisory Council for AI in Education

This state-level, multistakeholder body could provide ongoing oversight of policy, procurement, and implementation, ensuring anticipatory governance and embedding diverse expertise in decision-making.

4

Develop resources and capacity for participatory policymaking on AI in education

Provide toolkits, training, and facilitation resources to policymakers, educators, and communities. Building this capability ensures participatory approaches are inclusive, well designed, and able to sustain Opportunities 1–3.

5

Strengthen equity and inclusion in EdTech procurement

Embed participatory audits and equity criteria into procurement processes. Require vendors to demonstrate inclusion and accessibility, and mandate transparency through reporting and rotational audits. Procurement must align with the participatory structures established through Opportunities 1–3.

The growth of AI in education

The use of AI in education dates back decades. Some of the earliest applications are evidenced in the intelligent tutoring systems emerging from technological advances in the 1950s. The recent developments in generative AI (genAI) have rapidly accelerated AI use in education with the global AI education market predicted to grow to US\$22 billion by 2028.³

The versatility of general-purpose genAI models like ChatGPT, Claude and Co-Pilot has led to them being increasingly viewed as foundation models upon which more specialised, domain-specific systems can be developed. In education, models such as 'EdGPT' have emerged that are fine-tuned versions of foundation models trained on high-quality, education-specific data.⁴ With increasing accessibility and sophistication, such tools provide opportunities to create human-like text and rich multimedia content.⁵

Use of ChatGPT in education

UNITED STATES

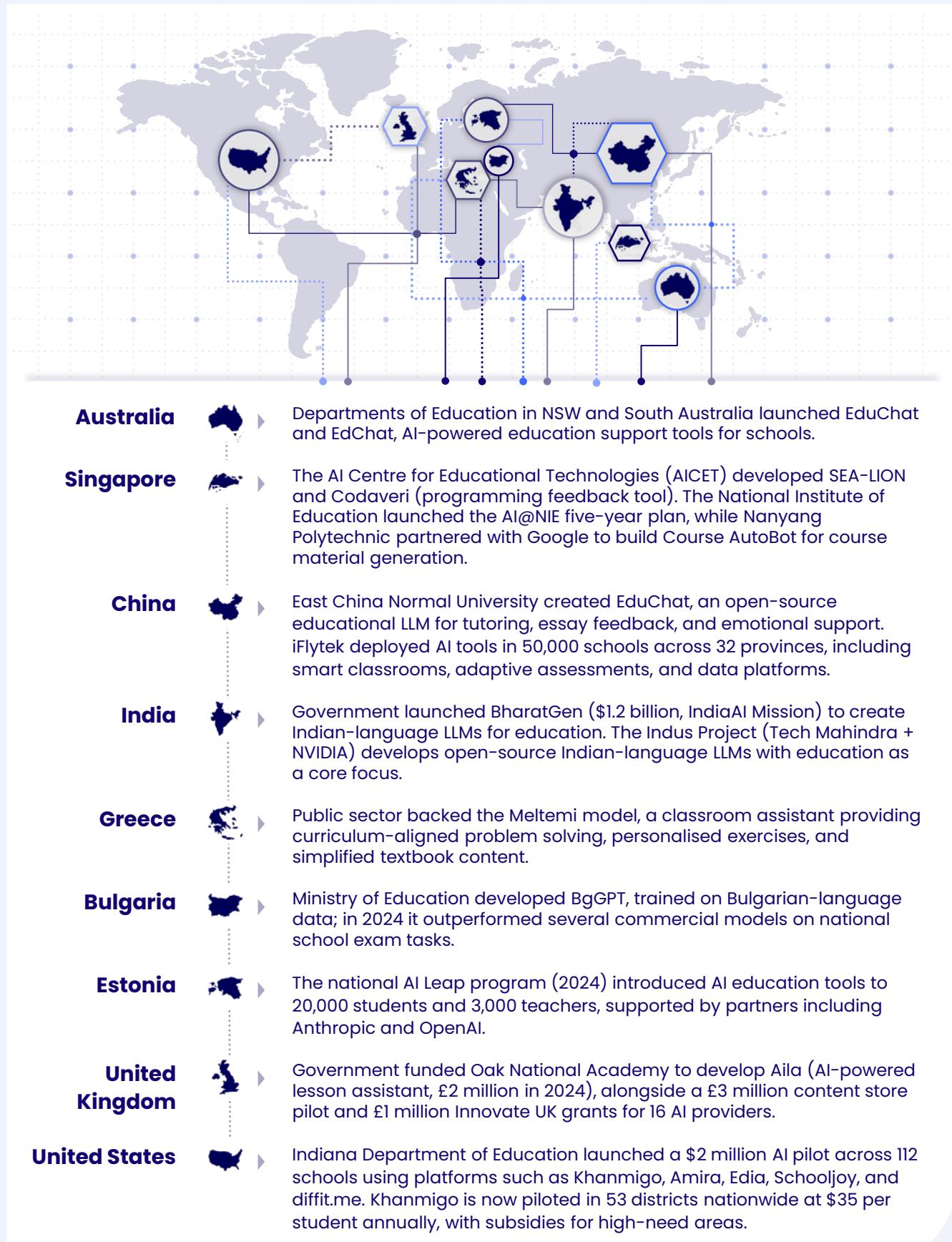
A January 2025 Pew Research Centre⁶ survey found that **26 per cent** of US teens aged 13 to 17 have **used ChatGPT for schoolwork**, doubling from 13 per cent in 2023.

Awareness among teens also rose from 67 per cent in 2023 to 79 per cent in 2024.

UNITED KINGDOM

A report highlighted that **80 per cent** of UK teens aged 13 to 17 have used AI tools like ChatGPT, with many **integrating them into daily academic activities** such as drafting checklists and preparing for exams.⁷

FRANCE & ITALY


A study involving 395 students aged 13 to 25 revealed **widespread use of large language models**, including ChatGPT, across various disciplines.

Older and male students showed higher usage frequencies.⁸

While global trends indicate that AI is increasingly recognised for its potential to enhance educational experiences and outcomes, its uptake and use is largely dependent on resourcing, regulatory systems, the appropriateness of available AI products, and user expertise.

The rapid expansion in AI use has unsurprisingly increased interest in how its use is governed.

The boundaries and names shown in this diagram do not imply any official endorsement or position regarding legal status or sovereignty.

Governing AI in education across the world

The growing use of AI in education holds transformative potential but also raises complex questions about equity, ethics, and human agency. These concerns include the risk of perpetuating systemic bias and discrimination, as well as deepening existing barriers for disadvantaged and marginalised students.⁹ Questions of human agency further arise in relation to accountability particularly when AI systems are involved in decision-making.¹⁰

According to recent international surveys, in high-income countries, over two-thirds of secondary school students are using generative AI tools to 'automate' the completion of school assignments.¹¹

The integration of AI in education across countries varies significantly. The OECD AI Policy Observatory (OECD.AI) hosts the Global AI Initiatives Navigator (GAIIN), which is a collection of more than 1,300 public AI policies and initiatives from over 80 jurisdictions and organisations. OECD.AI's Going Digital Toolkit provides in-depth analysis of AI and evidence-based insights in areas where AI has the most impact. The toolkit, structured around the OECD's Integrated Policy Framework, spans 38 policy domains across seven dimensions: access, use, innovation, jobs, society, trust, and market openness. It offers governments a holistic roadmap for digital policymaking. The toolkit further supports the monitoring of national digital performance through interactive dashboards that track key indicators and trends over time, while also enabling exploration of cross-cutting themes raised by digital technologies and data.

While almost all national strategies on AI highlight education as an instrument to develop AI capabilities and the Going Digital Toolkit helps governments craft coherent and resilient policies to realise the potential of digital transformation, few strategies formally recognise the integration of AI into education as a strategic priority or as a distinct policy domain.

The ASEAN AI Principles

Some education systems have begun to include the use of AI in their education governance policies. As one UN Special Rapporteur has stressed, AI in education should be guided not by technology, but by everyone's right to free, quality public education, as set out in human rights law and Sustainable Development Goal 4 (inclusive and equitable quality education). Many governments are now framing their AI education policies around human and civil rights.

The ASEAN AI Principles offer abstract but useful high-level guidance, stating, for example, that AI should not worsen existing inequalities or cause unfair bias, which could serve as a guide for other countries in the region. For instance, Singapore's Ministry of Education used the principles when developing an Adaptive Learning System that included human oversight, ongoing monitoring, stakeholder input, and a focus on student wellbeing. Although they are not legally binding, the principles are a helpful reference for building fairness into the use of AI in education.¹²

Research conducted by this team undertook qualitative analysis of 499 international AI policy documents, including all 'Governance' and 'Regulation' policies on the OECD Policy Observatory. Of these, only 36 engaged directly with AI in education as a policy issue. The most salient principle to emerge was 'opportunity-harnessing': educators, education leaders, and educational organisations should harness the opportunities to make education more inclusive, efficient, personalised, and student-centric.

Other principles on AI in education identified were:

Teacher training | Teachers should be trained to ensure that AI is used well in educational settings.

Privacy and data protection | AI systems used in educational settings should not create privacy or data security vulnerabilities.

Increasing equity/equality | AI should be used as a means of reducing existing educational inequities/inequalities.

The developments in Australia

Compared to other nations, Australia has been quick to explore policy solutions for the use of AI in education. Notable developments include the adoption of specific, granular guiding principles tailored to educational contexts. Such frameworks build on more generic AI ethics frameworks and align with international examples from UNESCO, the European Commission, and the World Economic Forum.

In 2024, the Australian House of Representatives Standing Committee on Employment, Education and Training conducted an inquiry into the use of generative artificial intelligence within the Australian education system, examining how these technologies are being adopted across sectors. In evaluating associated risks, Australia has sought to balance concerns about safety, equity, and academic integrity with recognition of AI's potential to enhance learning outcomes for children. The Committee's report, *Study Buddy or Influencer* (2024), together with the Universities Accord Interim Report (2023) and the Australian Framework for Generative AI in Schools (Education Ministers Meeting, 2023), has significantly shaped ongoing policy discussions.

The National Framework for the Assurance of Artificial Intelligence in Government (2024) requires government to "ensure high-quality data and algorithmic design. Audits of AI inputs and outputs for unfair biases, data quality statements and other data governance and management practices may assist to understand and mitigate bias in AI systems."¹³ The Australian Framework for Generative AI in Schools also has aspects related to access and fairness in the use of AI in education.¹⁴

However, as outlined below, there is a critical opportunity to strengthen Australia's governance of the use of AI in education through more participatory frameworks and deliberative policy tools that engage educators, students, and communities. This includes exploring innovative, non-regulatory mechanisms to guide the responsible evolution of AI in education. Embedding participatory models would reflect an ongoing commitment to educational equity and democratic engagement.

The challenges of using AI in education

The use of AI in education poses some key challenges for education systems and technology providers and for students and teachers as users.

Education systems and technology providers

- Current governance structures inadequately address the fast pace of AI innovation, leaving policy responses fragmented, reactive and delayed.
- Protection of children and young people's personal data needs to include the use of AI technologies.
- Gaps in expertise is challenging for education systems that need to bring together the technical and educational perspectives.
- Biases in AI technologies risk reinforcing existing educational biases.

The expanding EdTech ecosystem involves multiple participants: government and sector representatives, advocacy groups, EdTech companies, researchers, teachers, students and families, but there are limited channels for these groups to deliberate together on AI policy and practice. This fragmentation leads to reactive or piecemeal responses. For example, a technology company might introduce a new AI app directly to schools before any sector-wide guidelines exist, or individual schools might set their own rules (some embracing the tech, others banning it).

Good ideas and valid concerns may not be shared beyond local contexts, and policymaking can lag behind on-the-ground reality.¹⁵ Without broad input, there is a risk that policies will overlook implementation issues or equity considerations. Processes are needed that bridge these silos, create feedback loops between classrooms, communities, and policymakers, and ensure timely and holistic responses to the opportunities and risks of AI.

The vast amount of personal data that AI tools collect, often without transparent processes, raises serious ethical concerns, especially for children.¹⁶ Issues around informed consent, data misuse, and a lack of accountability for AI-generated errors threaten student safety and equity.

AI algorithms risk reinforcing existing educational biases, particularly disadvantaging students from already marginalised groups. While AI is known to exhibit biases against women and people of colour, early research also reveals less recognised biases, such as favouring urban settings, underrepresenting women in specialised roles, overlooking people with disabilities, and privileging middle-class, white-collar identities. These reflect biases in training data and those of AI developers. Efforts to enforce diversity through algorithmic fixes have often failed.¹⁷ Further exploration is needed to understand how English-language training data and gaps in digitised historical materials could result in biased outputs.

The lifecycle of AI poses new equity challenges. These include 'technical bias', which occurs from problems in applying machine learning that result in additional biases that are not present in the data used to train the system or make decisions; and 'social bias', i.e. when historical or existing societal inequalities are not properly accounted for in the activities within the lifecycle of AI systems such as designing and training models.¹⁸

These challenges highlight that the inequities associated with AI in education are not only technical but social and institutional. Addressing them requires resources (to improve access and skills) and new governance approaches to ensure inclusive, well-informed decision-making.

Students

- Students from disadvantaged and marginalised backgrounds experience disproportionate barriers in accessing and effectively utilising AI-driven educational technologies.
- The ability of students to use technologies to manage and evaluate information is not keeping pace with change.
- Students with diverse learning needs, particularly those with disability, are overlooked in many AI-related commercial products that are designed for the 'average learner'.
- Students' learning experiences may be impacted by reduced interaction with teachers.

Students from disadvantaged and marginalised backgrounds face significant barriers to accessing and using AI-driven educational technologies.¹⁹ AI tools often rely on real-time connectivity and high-quality digital resources, which are less available in socio-economically disadvantaged schools. In 2022, principals in disadvantaged schools in OECD countries reported that nearly 30 per cent of students had inadequate digital resources, compared to less than 20 per cent in advantaged schools.²⁰ In Australia, students in low-income and rural households often rely on mobile phones for schoolwork, with 76 per cent of disadvantaged respondents reporting mobile-only access, compared to 10.5 per cent nationally.²¹ These students are least likely to access AI tools, despite often having the most to gain from personalised support.

Beyond this, students' ability to manage and evaluate digital information is falling behind. Digital literacy is essential for engaging with AI, yet proficiency remains uneven. Reported declines in general digital literacy disproportionately fall on students with existing disadvantages. For example, a difference of around 30 percentage points was reported in attainment of proficiency between non-Indigenous and Indigenous students.²²

Students with disability are often overlooked in commercial AI products, which tend to be built for a generic or 'average' learner. These tools typically lack features for differentiated instruction or accessibility, which can reinforce exclusion. The national peak body, People with Disability Australia, has called for greater involvement of people with disability in the design of AI systems.²³ According to the Australian Digital Inclusion Index, people with disability score much lower in digital ability and access than those without disability.²⁴ If AI is better designed to serve these groups, they could be significant beneficiaries of the technology.

Increasing reliance on AI in education may reduce students' interaction with teachers. This loss of human connection can negatively affect learning, particularly for students who rely on relationships for motivation, emotional support, and personalised guidance. To ensure equity, AI must support rather than replace teacher-student engagement.

Mobile-only access deepens the digital divide

As AI tools become increasingly integrated into education systems, reliable and equitable access to digital infrastructure is essential. Yet for some students, particularly Aboriginal and Torres Strait Islander students living in rural and remote areas, mobile-only internet access remains the primary and often the only means of connectivity, creating significant barriers to full participation in AI-enabled learning. In a 2023 survey of a rural New South Wales community, 76 per cent of respondents reported being mobile-only users for both voice and internet access. Nationally, just 10.5 per cent of Australians rely solely on mobile access, highlighting the access gap for these communities.²⁵

According to the 2023 Australian Digital Inclusion Index, mobile-only users are more likely to come from low-income households and often face data limits, slower speeds, and higher costs, all of which reduce their ability to access educational tools and platforms effectively.²⁶ This digital exclusion undermines national commitments under Outcome 17 of the 2021 Closing the Gap agreement,²⁷ which sets a target for equal levels of digital inclusion for Aboriginal and Torres Strait Islander people by 2026.

Without targeted investment and community-led approaches to address infrastructure gaps, mobile-only access could entrench educational inequalities, particularly as AI-based tools demand higher bandwidth, regular updates, and multimodal interaction.

Teachers

Teachers face similar challenges to students in the use of AI in education. Access to AI technologies and professional learning varies from school to school and within secondary schools some key learning areas are more likely to access AI than others.

- There are significant variations in teachers' skill sets and their access to professional learning on how to use AI technologies.
- Teachers under time pressure are less likely to critically assess or question AI-generated shortcuts.

There is wide variance in how effectively AI and EdTech are used by teachers²⁸ and professional development opportunities have been limited, especially in rural and high-need schools.²⁹ Some teachers are innovators, adept at integrating new apps into lessons, while others feel unprepared or hesitant. Students likewise have diverse digital skill levels and varying levels of support at home. This leads to inconsistent adoption; a new tool might be used extensively in one classroom but hardly in another. Such disparities can result in unequal student outcomes with student learning experiences impacted by the lack of consistent teacher training and confidence in using technology.³⁰

Unlike earlier AI models designed for fixed tasks, genAI draws on vast training datasets to respond to open-ended prompts, producing variable and unpredictable outputs.³¹ While safety filters are used to block harmful outputs, these mechanisms are often blunt tools, either over-blocking useful content or failing to address emerging harms.

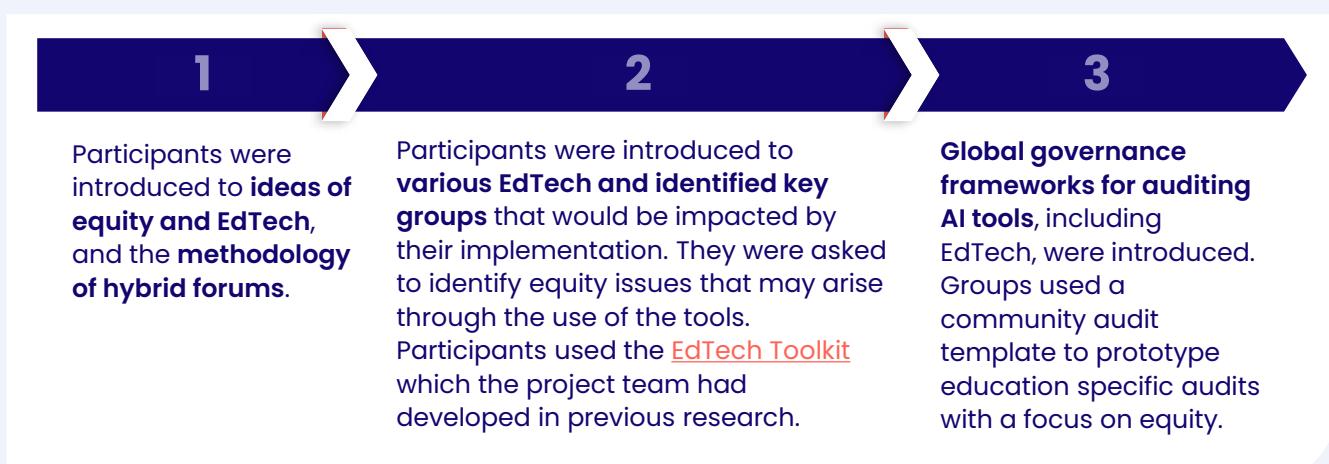
Participatory methods to inform the use of AI in education

In the context of NSW, this research tested two participatory methods to explore how these approaches could inform the governance and use of AI in education:

- Hybrid forums
- Serious games

What are participatory methods?

Participatory methods in policymaking are structured processes that engage diverse groups in decision-making on complex and uncertain policy issues. These groups can range from community members and experts to policymakers and industry representatives. While technical expertise is critical and can provide important insights, expert-led reviews can miss context-specific harms, especially those that only become visible to affected communities after implementation.³² Participatory methods aim to address this by relying on collective capacity-building and the distribution of authority across different experiences, knowledge and skills.³³


Hybrid forums

Hybrid forums are a participatory approach involving multiple perspectives in policymaking discussions.³⁴ In such forums, participation enables critical reflection on the politics of AI systems, how they operate, who they serve, and whose interests they overlook. Hybrid forums promote collective experimentation by enabling participants to test and revise assumptions through interaction with real technologies, such as in the development of educational algorithm games or participatory audits. Forums can help reconfigure how decisions about AI are made, shifting from top-down imposition toward democratic, cross-sector engagement that reflects the ethical, pedagogical, and political realities of education systems.

Participatory auditing of EdTech and AI for equity

A participatory workshop was held involving teachers, academics, principals, education department members, EdTech companies, and other members of the broader Australian education system. The aim was to create new approaches to auditing AI and EdTech tools, building on existing approaches to audits.

The workshop involved the following process:

Key Insights from the workshop included:

- **Equity** must be seen as both process and outcome: meeting diverse needs, removing barriers, and ensuring access for all students, not just equal inputs. Proactive strategies and resources are essential.
- **Product/system:** Scrutiny of ownership, business models, and data design is critical to ensure technologies serve educational rather than commercial interests.
- **Classroom:** Student agency and consent in data use are key; AI risks reshaping teacher-student relationships and pedagogical judgement.
- **School:** Infrastructure inequities and weak review mechanisms risk embedding disadvantage. Schools need evaluative capacity and stronger parent/carer engagement.
- **Sector:** AI unsettles pedagogy and assessment, highlighting the need for professional learning and workload support.
- **Society:** Risks include inequitable student records shaping futures, cultural harms to knowledge systems, and environmental costs of AI.

These insights confirm that equity cannot be achieved through technical fixes alone. Participatory, multilevel governance is needed to anticipate risks and steer AI toward public value.

Serious games

An important but often overlooked component of policymaking on AI in education is the inclusion of young people. However, it is often hard to engage them in policy processes. Serious games can provide the structure to involve a range of participants, including young people, to inform policy decisions on the use of AI in education.

Games are a structured form of play involving rules and goals that design competitive or collaborative interactions between players.³⁵ They are an effective participatory method to support cooperative and creative responses to complex problems by enabling cross-stakeholder dialogue and understanding. 'Serious games' are games with purpose, including the exploration of policy problems.³⁶ This can include 'algorithm games' or 'toy algorithms',³⁷ playful tools that aim to help people understand the design or use of algorithms through interaction with them.

Serious games provide interactive, scenario-based simulations that allow individuals, including policymakers and the public, to engage with policy challenges.³⁸ They can construct real-world complexities, such as resourcing limitations, differences in perspectives, and unintended consequences and enable participants to test different policy options, observe their impacts, and refine their decision-making strategies.³⁹ Serious games facilitate collaborative problem-solving and foster deeper understandings of policy trade-offs, making them a useful tool for more informed, effective, and inclusive policymaking.

Building AI policy literacy through serious games in education

The AI Fairness Game workshop used a serious game format to build policy literacy and engage diverse participants, including students, educators, researchers, and policymakers, in decision-making about AI in education. Teams, representing fictional schools with varying resources, assumed roles such as principals, students, and teachers to address fairness scenarios involving real-world AI applications. As a role play game, it involved players assuming the roles of principal, student, and teacher in different fictional school settings. Players had to assume these roles in different scenarios about the use of AI in education, with the aim of creating policy options for the tools (see [Annex A](#) for examples of tools to undertake participatory work).

Initially, teams responded to scenarios based on real AI technologies used in schools, such as facial recognition and auto-generated alt-text, that surfaced fairness concerns. Participants used a menu of policy options (e.g. banning certain uses, offering non-AI alternatives, or setting up oversight bodies) and were constrained by differing school budgets. This encouraged them to simulate realistic decisions, balancing fairness goals with practical resource trade-offs. Later, teams scaled up their policy thinking, considering system-wide responses beyond their individual schools.

The game was not aimed at generating new policy ideas, but instead at helping participants better understand existing AI policy options and their practical limitations. For example, teams proposed stakeholder-inclusive approaches to issues like AI engagement tracking, weighing benefits such as consent and transparency against coordination costs. Budget constraints embedded in the game helped simulate real policy trade-offs.

Role play activities encouraged participants to adopt new perspectives, with one participant noting it helped them to "empathise with the constraints" that others face. Most participants felt that the game structure supported inclusive discussions, with students' input recognised as valuable.

The workshop demonstrated that serious games could build AI policy literacy, promote empathy, and create space for dissent and debate in policymaking. It also highlighted design tensions between role play and lived expertise, offering useful insights for future participatory methods in education.

“

Hearing from the actual student, the credibility is just so clear, well, that is... it's obviously the most credible answer because this is the actual experience of using the technology. We can only ever really guess.

AI Fairness Game Workshop Participant

”

“

I think that worked really well... putting aside your own kind of beliefs and thinking well, what would someone else in this position be thinking like?

AI Fairness Game Workshop Participant

”

“

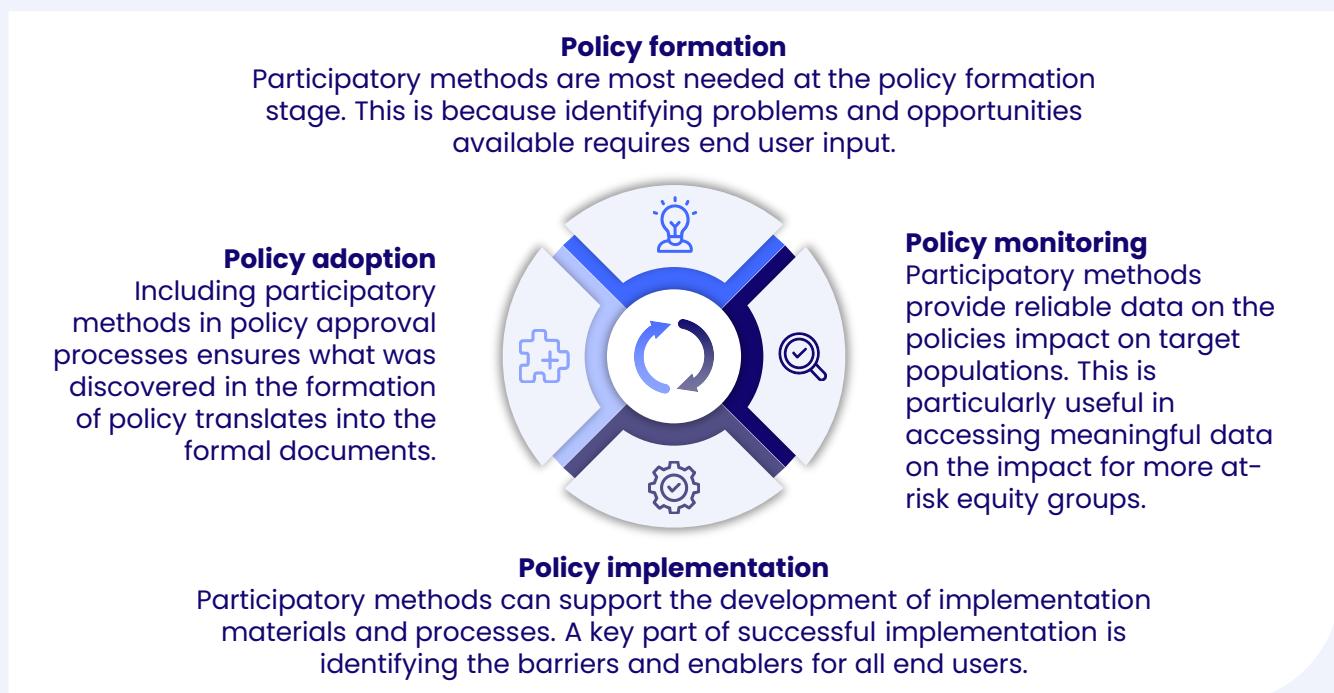
It was very different stepping into those shoes and thinking about it... there is that kind of realisation and growth in understanding from a different perspective.

AI Fairness Game Workshop Participant

”

Using participatory methods to guide the use of AI in education

The workshops showed how participatory methods that engage diverse perspectives, such as students and teachers, can inform the use of AI in education to ensure greater equity and enhanced governance.


In participatory methods, participants are encouraged to embrace uncertainty, explore the systems and postpone proposing solutions to allow all voices and perspectives to be considered. Differences in participants' lived, professional and technical experience are valued and can constructively challenge assumptions and open new possibilities for understanding and action.⁴⁰

Participatory methods aim to democratise knowledge production and decision-making, particularly in rapidly evolving areas such as AI and EdTech. They help address power imbalances, encourage collective responsibility, and foster policy legitimacy through transparency and inclusion.⁴¹ Participatory practices encourage participants to critically explore trade-offs, challenge assumptions, and negotiate uncertainties collectively, thus enhancing the adaptability and responsiveness of policies to social needs.⁴²

While Australia has formal and informal expert advisory groups on AI, there is no collective policymaking approach that convenes diverse stakeholders to explore the potential benefits and harms of using AI in education. This gap creates two risks: that the opportunity to use AI to address educational disadvantage will be missed and that action will not be taken to prevent harms to vulnerable populations. The challenge of anticipating issues linked to AI in education was a prominent theme in the 2023 Australian parliamentary inquiry into AI in education, where multiple submissions highlighted the critical need to increase the diversity of stakeholder engagement in developing AI policy for education.⁴³

There is a clear need to increase the types of expertise that is drawn upon to generate and test policies about AI and educational equity.⁴⁴ Participatory methods offer strong potential to develop better policies on how AI is used in education settings.

Figure 1 | The role of participatory methods in policymaking

Recent evidence shows that participatory policymaking offers many practical benefits, including improved alignment between policies and community values, enhanced trust, increased capacity to manage emerging risks, and strengthened policy effectiveness.⁴⁵

While offering an innovative approach to policymaking, participatory methods nonetheless have some limitations. Participation must be thoughtfully designed to manage potential drawbacks, such as unequal participation, expert dominance, stakeholder fatigue, and slow response times.⁴⁶

At times, participatory mechanisms may misalign with technological development or the sector's immediate needs, resulting in outcomes delivered too late. Participatory processes are often perceived as too slow to match the rapid pace of AI development, and no single actor holds expertise across all AI systems, educational contexts, and policy domains. One way to address this is to invest in anticipatory mechanisms that take a long-term view of technological development.

Participatory methods in action: **UK Policy Lab**

Established in 2014 within the UK Cabinet Office, the Policy Lab showcases how governments can embed participatory methods into policymaking. Its core mission is to ensure that policy development is more open, inclusive, and responsive by incorporating the lived experiences of citizens and the expertise of diverse stakeholders. The Lab draws on design thinking, ethnographic research, and systems innovation to co-create solutions alongside communities and policymakers. It applies a range of participatory methodologies, including co-design workshops, citizen assemblies, film-based ethnography, and serious games. For example, the Changing Futures Programme involved people with lived experience of multiple disadvantage in shaping service and policy responses. Instead of treating citizens as passive recipients of policy, the Policy Lab views them as experts in their own experiences enabling policy that is more equitable, grounded, and contextually relevant.

Over the past decade, the Policy Lab has supported more than 250 policy projects across multiple departments, contributing to health, housing, education, and justice policy. The Policy Lab's work demonstrates how participatory policymaking can enhance the legitimacy and transparency of government processes and the quality and sustainability of policy outcomes. By blending qualitative insight ('thick data') with quantitative evidence ('big data'), the Lab shows how people-centred design can complement traditional policy analysis. Its success illustrates the value of treating policymaking not just as a technical process, but as a collaborative and democratic practice that benefits from the creativity, insight, and lived experience of the public.

Without inclusive participation, governance efforts risk defaulting to narrow, technical definitions that overlook deeper structural inequities. In this context, participation is not just a matter of fairness, but a technical necessity: it is essential to producing AI systems that are more trustworthy, context-aware, and responsive to the needs of diverse stakeholders. This makes it critical to identify and embed practical mitigations, such as clear process design, adequate resourcing, and safeguards for inclusion, to ensure participatory methods deliver meaningful and timely outcomes. Our research identified key enablers and barriers to embedding participatory methods in the development and evaluation of AI in education.

Enablers

- Clear objectives and transparent process** | Clearly articulated education focused goals linked to existing policies and requirements and scope for participant involvement.⁴⁷
- Inclusive participant identification** | Intentional inclusion of education stakeholders including students, teachers, school administrator, representative stakeholder groups, particularly marginalised voices.⁴⁸
- Attention to cultural and community safety and wellbeing** | Ensure participants understand the principles of cultural and community safety, especially in interactions with children.
- Appropriate resourcing** | Dedicated time and funding for teacher release allocated to facilitate sustained engagement.
- Skilled education focused facilitation** | Neutral, education focused facilitators to effectively manage dialogue, navigate disagreements, and maintain inclusive practices.⁴⁹
- Integration of local knowledge and expertise** | Structured opportunities to local and experiential knowledge to produce balanced outcomes.
- Trust-building measures** | Ongoing efforts to develop trust among participants, including transparency in how inputs are reflected in policy decisions.⁵⁰
- Iterative evaluation** | Regularly evaluating processes and adjusting participatory practices in response to feedback.
- Political and institutional support** | Explicit endorsement and backing from education sector leaders and institutional frameworks to legitimise and empower participatory methods.⁵¹

Barriers

- Resource constraints** | Costs in time, changes in roles, government priorities and institutional capacity that impede continuity and depth.
- Structural barriers such as inaccessible venues or materials** | Unrecognised inequalities leading to uneven involvement, particularly disadvantaging marginalised or less vocal groups.⁵²
- Lack of clarity or transparency** | Ambiguous or opaque processes that lead to confusion, distrust, or disengagement among stakeholders.⁵³
- Expert dominance** | Over-reliance on expert or technical perspectives, potentially marginalising community insights and experiential knowledge.
- Participant fatigue** | Overuse of participatory mechanisms without clear outcomes, causing frustration, fatigue, and withdrawal from future participation.⁵⁴
- Slow or ineffective decision-making** | Time-consuming deliberations that delay policy responses, especially problematic in rapidly evolving contexts such as educational technology.⁵⁵
- Tokenistic practices** | Processes perceived as symbolic or superficial rather than meaningful, reducing trust and future participation.⁵⁶
- Hidden power dynamics** | Underlying power structures or conflicts masked by consensus-seeking behaviours, potentially compromising legitimacy and fairness of outcomes.

A policy agenda for Australia

This study identified policy opportunities to navigate the complex landscape of AI in education, address equity concerns and ensure inclusive processes. These opportunities, developed from an analysis of existing research and the findings from two workshops, provide a roadmap of actionable strategies for NSW and wider Australia.

OPPORTUNITY 1 Build participatory, multilevel AI governance models

Establish the structural governance framework that links classroom, school, and system-level decision-making. Options include school-based committees involving students and families, and state-level forums such as focus groups, public consultations, or deliberative panels.⁵⁷ Local insights should inform system-wide policy, while central frameworks support school-level adaptation, forming a continuous and iterative feedback loop.⁵⁸

The use of AI in education raises complex challenges, from classroom pedagogy to system-wide data governance. Participatory, multilevel governance would help align technical standards with local pedagogical needs, ensuring AI implementation is context-responsive and equity-focused.⁵⁹ This approach would embed grassroots perspectives, particularly those of marginalised students and teachers, into strategic decision-making, enhancing fairness, policy legitimacy, and ethical vigilance.⁶⁰

A priority should be the participation of students, community and families and teachers to surface emergent risks and opportunities before they escalate. Representation of 'at risk' groups – including Aboriginal and Torres Strait Islander students and communities, people with disability and those living outside of metropolitan and regional cities – is critical.

Participatory processes could be piloted at the school and district level, such as AI audits or equity-focused procurement reviews.⁶¹ Successful models could be scaled into permanent structures, for example, an AI in Education Advisory Council (see Opportunity 3) with representatives from education, technology, and community sectors.⁶² This would support shared responsibility and strengthen democratic governance of AI in education.

OPPORTUNITY 2 Operationalise local engagement to identify AI risks and benefits

Create practical mechanisms at the school and regional level, such as participatory audits and roundtables, to surface AI risks and benefits early. This could be achieved by establishing forums that engage educators, students, parents, technologists, and researchers to identify the localised impacts of AI in education. Mechanisms such as regional roundtables or participatory AI audits in schools, would enable participants to collaboratively assess emerging benefits, risks, and equity implications of AI tools.⁶³

Those closest to practice, teachers, students, and families, often identify both promising innovations and unintended harms before they are visible in centralised data or policy processes.⁶⁴ Participatory engagement would help policymakers proactively address issues such as algorithmic bias, cultural misalignment, and inequitable access, particularly in under-resourced or marginalised contexts.⁶⁵

State governments could collaborate with independent facilitators or universities to deliver structured, inclusive engagement programs. Insights could be synthesised through tools like an 'AI in Education Risk–Opportunity Dashboard' and fed directly into policy development cycles. Ensuring accessibility – through digital inclusion, translation services, and targeted support for Aboriginal and Torres Strait Islander communities and students with disabilities – would be essential to legitimacy and effectiveness.⁶⁶

These formalised local-level engagements would provide an early warning system for emerging AI risks, create a space for co-developing strategies to maximise equitable and educationally sound AI adoption and help align technology use with local needs and values.

OPPORTUNITY 3 Establish a multistakeholder Advisory Council for AI in Education

A permanent governance body in the form of an Advisory Council for AI in Education could play a central role in guiding the use of AI in education including the review of policy and procurement. It should be composed of diverse stakeholders, including education department officials, school leaders from public and non-government sectors, students, parent associations, educational technologists, ethicists, and EdTech developers. The council would provide ongoing, structured advice on AI-related policy, procurement, implementation, and oversight across the education system.

AI governance in education requires interdisciplinary collaboration. A standing advisory body would enable coordinated, rather than fragmented, governance by embedding deliberative, cross-sector expertise into decision-making.⁶⁷ While technical experts contribute essential insights into algorithmic design and data governance, educators and community members are best placed to assess contextual relevance, pedagogical impact, and equity concerns.⁶⁸ A new advisory council would support anticipatory policymaking, strengthen legitimacy, and help address emergent issues such as student surveillance, data sharing protocols, or bias in learning analytics systems.⁶⁹

Co-leadership by a senior public education official and an independent academic or civil society leader would enhance credibility and ensure balanced representation. Outputs may include public communiqués, policy reviews, and annual State of AI in Education reports. Over time, the council could act as a hub for piloting participatory policy tools, coordinating equity audits, and fostering trust in AI's role in education.⁷⁰ The council could draw on the experiences of other similar entities such as those presented below.

Australian Government AI Expert Group

In 2024, the Australian Government Department of Industry, Science and Resources convened a 12-member Artificial Intelligence Expert Group to advise on transparency, testing, and accountability for AI systems. The group includes experts in AI ethics, law, Indigenous knowledges, digital governance, and education. Its role was to provide guidance on mandatory guardrails for high-risk AI applications to ensure safe, transparent, and trustworthy systems. Although not limited to the education sector, the group's work laid important foundations for regulating AI in schools, particularly in areas such as student assessment, behavioural analytics, and automated decision-making. It has provided a model of expert-led participatory policymaking, balancing technical innovation with equity, safety, and public confidence.

Washington State K-12 AI Advisory Group (us)

In 2023, Washington's Office of Superintendent of Public Instruction (OSPI) convened an AI Advisory Group to guide the integration of AI in the state's preschool to Year 12 (K-12) schools. This state-led panel exemplifies a broad stakeholder approach. The group included educators at all levels: a high school student, classroom teacher, a school principal, a district superintendent, a district technology lead, and academic experts from the University of Washington. Through collaborative workshops and consultations, the group drafted comprehensive guidance for schools and educators. The model is cited as a case study for other jurisdictions seeking to develop balanced AI strategies in education.

OPPORTUNITY 4

Develop resources and capacity for participatory policymaking on AI in education

Targeted training and resources on participatory policymaking for government, educators and community representatives would enable stronger and more inclusive governance. This would involve tools that connect policy, AI and real-world applications, creating space for shared discussion between policymakers, technical experts, educators, communities, and students. Practical resources such as toolkits, training modules, and scenario-based guides would support the design of inclusive, equity-focused AI governance processes. Examples include a Participatory Policy Design Toolkit for EdTech, or online platforms that enable collaborative policy development through public consultation and deliberative events (e.g., policy hackathons).

Participatory policymaking requires new skills, institutional mindsets, and support structures. While education officials may be experts in curriculum and regulation, many lack experience in facilitating inclusive processes or integrating youth and community voices into technology governance.⁷¹ Without dedicated support, participatory processes risk becoming tokenistic. Purpose-built resources could bridge this gap and promote more effective and legitimate policymaking.⁷² When educators and students are meaningfully involved, policies are more implementable, context-sensitive, and broadly supported.⁷³

Building this capacity would help ensure that AI policy remains adaptive. As technologies evolve, governance must be iterative and informed by rapid feedback loops. Participatory policymaking offers both a procedural justice mechanism and a practical means to surface emergent issues and adjust policy accordingly.⁷⁴

Education departments could partner with participatory governance specialists to co-develop resources tailored to AI in education. These may include templates for inclusive engagement, guidance on stakeholder mapping, and tools for deliberation, such as serious games or scenario planning.⁷⁵ Outputs like a Collective EdTech Policy Playbook could guide officials in integrating participation into procurement, curriculum innovation, or system-level oversight. Over time, a community of practice could be established to share lessons, refine tools, and build a sustained culture of democratic innovation. [Annex A](#) offers a starting point for sharing resources on participatory policymaking methods.

OPPORTUNITY 5 **Strengthen equity and inclusion in EdTech procurement and implementation**

The reform of AI and EdTech procurement processes could ensure the prioritisation of equity and participatory input. There is scope to implement a participatory auditing model to address the equity and governance challenges posed by generative AI in schools. In NSW this model could integrate with the Department of Education's existing procurement processes.

Procurement is a critical factor in shaping the AI-EdTech ecosystem:⁷⁶ once systems are contracted and deployed, it becomes hard – if not impossible – to reverse decisions, retrofit safeguards, or address structural inequities. Too often, purchasing decisions are based on functionality or cost, with limited scrutiny of whether products are inclusive, culturally responsive, or accessible. As many commercial EdTech products are designed for an 'average' user, they risk amplifying existing inequalities when deployed in diverse school contexts.⁷⁷

Embedding equity into procurement could incentivise vendors to meet higher inclusion standards and enable education systems to steer innovation toward public value.⁷⁸ Prior to adoption, vendors would be required to show how their technologies support diverse learner needs.

The proposed model would introduce key reforms to the existing procurement process, including

- (i) a stakeholder engagement phase before system design to capture equity indicators from underrepresented groups, and
- (ii) a public reporting mechanism to ensure transparency. Static monitoring could also be replaced with long-term, rotational audits and new accountability mechanisms could be embedded after evaluation stages. Equity-focused adjustments, such as prioritising resource allocation for disadvantaged schools, ensuring culturally inclusive evaluation criteria, and aligning audits with national standards, could help ensure that AI tools support all learners fairly and safely.

Participatory procurement, through panels or pilot testing in a range of school settings, would give practical insights into product alignment with real classroom needs and help identify unintended consequences early.⁷⁹ This would result in more context-appropriate adoption and build trust.

Procurement policies could be updated to include an 'AI Equity Audit' framework that evaluates products against criteria such as accessibility compliance, language and cultural inclusiveness, and potential for algorithmic bias. Stakeholder review panels comprising educators and students from diverse backgrounds could test and score products prior to adoption. Ongoing monitoring requirements could be integrated into contracts, mandating disaggregated data collection on usage and impact, with appropriate privacy safeguards.

A multistakeholder Advisory Council (see Opportunity 3) could oversee procurement standards and review high-risk deployments. Education departments could also align with international benchmarks, such as the EU's Trustworthy AI procurement guidelines, to enhance accountability and interoperability.

Equity-centred procurement could shape an AI ecosystem in education that reflects democratic values, distributes benefits fairly, and avoids reproducing structural disadvantage.

Figure 2 | Model of a standard procurement process for EdTech

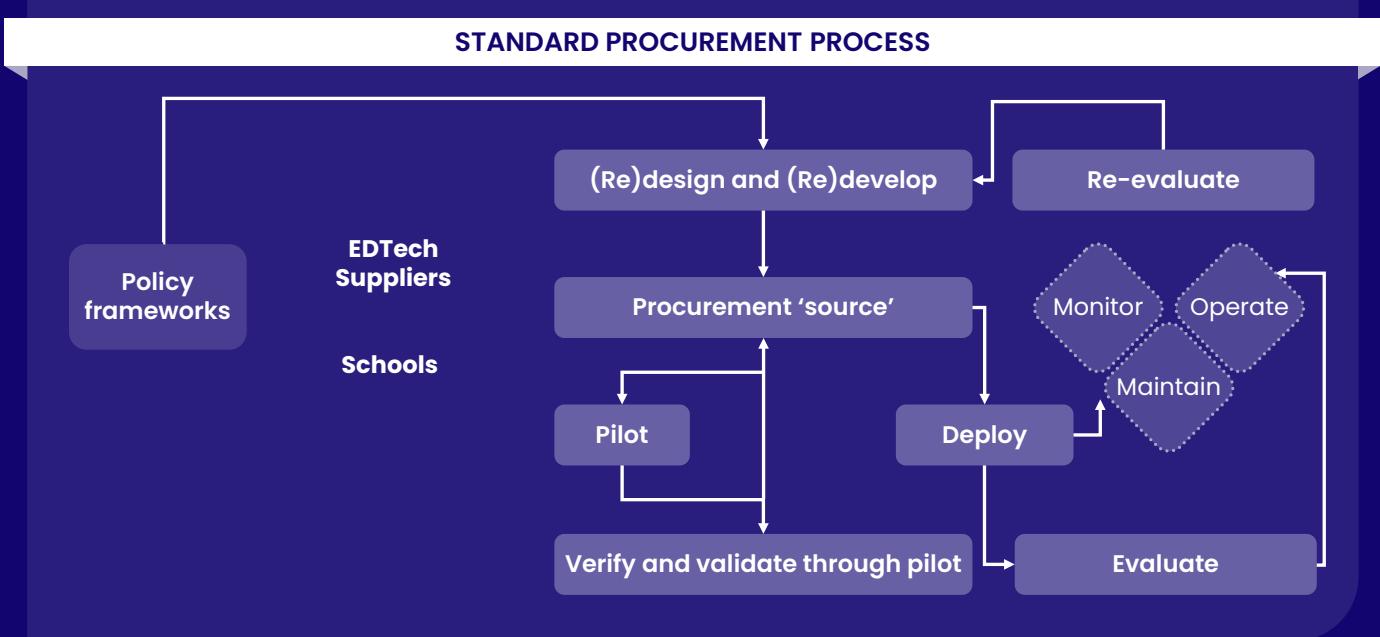
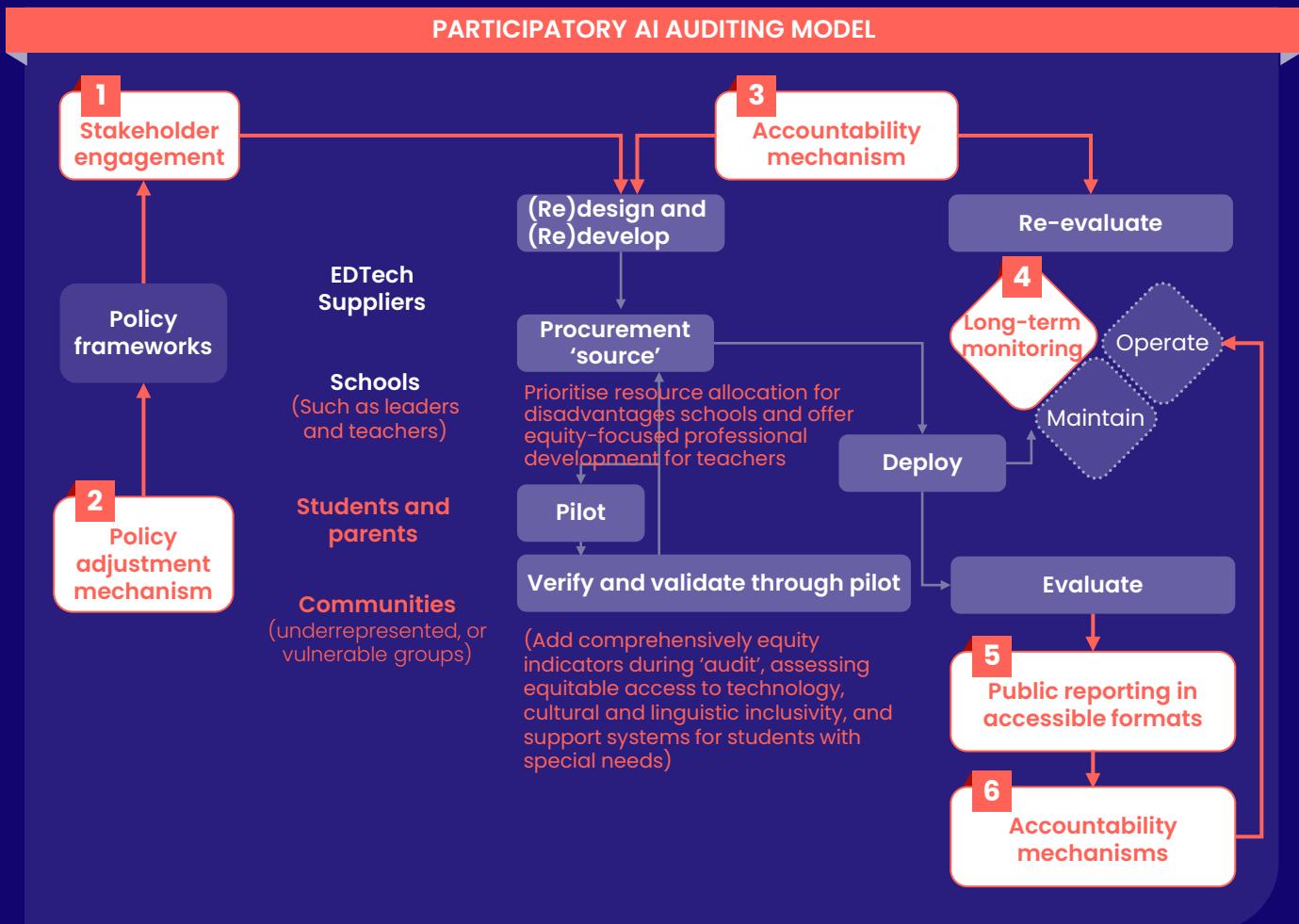



Figure 3 | A participatory AI auditing model that builds on a standard procurement process

- 1 Stakeholder Engagement**
Establish a '**Stakeholder Engagement**' phase before a design and development to gather **equity indicators** to ensure the audit process reflects the needs of diverse groups
- 2 Policy adjustment mechanism**
Policy adjustment mechanism: align the audit process with national standards and international best practices, updating procurement and resource allocation based on audit findings
- 3 Accountability mechanism**
Insert an '**Accountability mechanisms**' step following the '**Evaluation**' phase
- 4 Long-term monitoring**
Replace 'Monitor' with '**Long-term monitoring**', implementing ongoing monitoring mechanisms and periodic rotational audits to maintain objectivity
- 5 Reporting in accessible format**
Insert a '**Public reporting in accessible formats**' step following the '**Evaluation** phase'
- 6 Accountability mechanism**
Insert an '**Accountability mechanisms**' step following the '**Evaluation**' phase

Conclusion

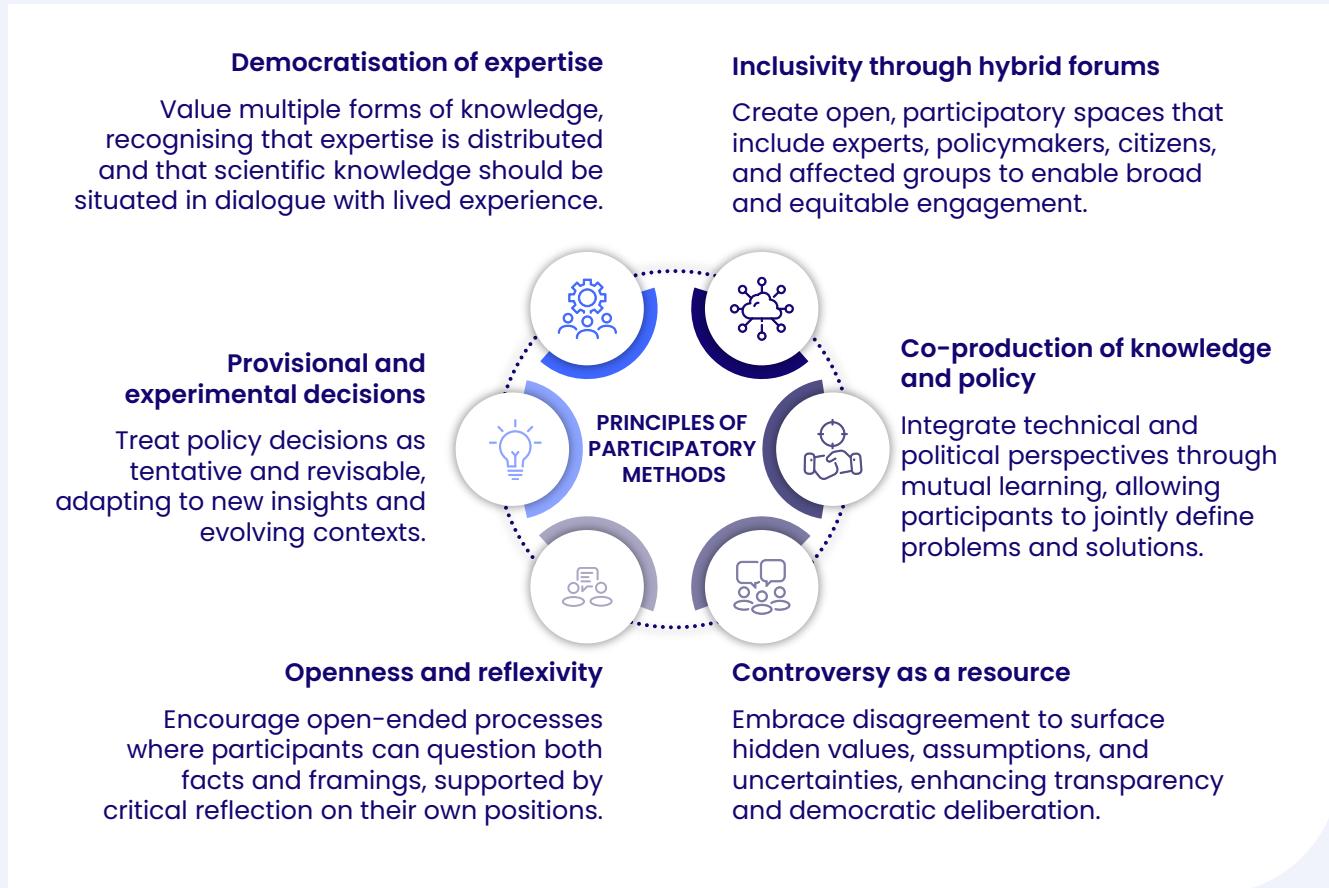
The use of AI in education has the potential to transform learning for the better, but sustained action is needed to ensure that its implementation is informed by a range of diverse users, practitioners and stakeholders. Policymakers can address this challenge by embracing a governance approach that is both anticipatory and participatory. By looking ahead to emerging opportunities and risks, and by widening the circle of those involved in decision-making, NSW and Australia generally will be better placed to rapidly respond to technological changes and ensure that policy responses are fair and inclusive.

The opportunities and actions identified in this paper provide a comprehensive pathway to balance the innovative use of technology in education with equity, quality, and democratic engagement. With effort and collaboration, the education system can harness AI in a way that benefits all learners – helping to close gaps, amplify effective teaching, and prepare students for a future where technology and humanity must progress hand in hand.

Building an equitable AI-enabled education future will require sustained commitment and a phased approach. Short- and long-term actions must work together to maintain momentum, adapt to new developments, and ensure accountability in the pursuit of an equitable, innovative education system. Inclusive strategy setting, such as an AI in Education Governance Action Plan led by a new advisory council, could create a shared vision for equity, inclusion, and participatory governance. Pilot and scaled participatory models, continual review and iteration of policy would together strengthen the foundations of equitable governance.

Equally, robust oversight and public accountability will be essential to uphold rights and build trust. Participatory processes can keep communities informed and empowered, ensuring ethics remain at the heart of AI's expansion in education. If governments, educators, technologists, and communities commit to these opportunities, Australia can shift governance from reactive to proactive, guiding AI toward educational equity and excellence.

With effort and collaboration, the education system can harness AI in a way that benefits all learners – helping to close gaps, amplify effective teaching, and prepare students for a future where technology and humanity must progress hand in hand.



Annex A | Participatory method tools

This resource provides a snapshot of available tools that support participatory methods including steps for practice, examples of participation maps, practice-based scenarios and vignettes for serious games.

Principles of participatory methods

Community Audit Checklist

AI audits provide a well-established mechanism for determining the degree to which AI systems adhere to standards and exhibit any bias in their training and/or outputs.⁸⁰ Typically, AI audit frameworks are intended for expert use with a technical focus.⁸¹ In education, AI audits should involve a technical and non-technical aspect. This approach emphasises collaboration, transparency, and inclusivity to ensure that AI systems are ethically designed, fairly implemented, and aligned with the values and needs of the communities they impact.

The Community Audit Checklist below is designed to support communities in asking critical, informed questions about the risks, impacts, and mitigation strategies associated with AI and EdTech policies. It can be used during procurement discussions, technology rollouts, or planning meetings to evaluate proposed or existing digital systems.

Category	Risk types	Impact	Mitigation measures
EdTech development	Data storage and breaches	Loss of personal/sensitive information/data	Assessing existing digital infrastructures and necessary cybersecurity support.
	Data collection, processing and use	Allocation and representational harms resulting from data misuse; reinforcing structural bias or discrimination	Assessing existing digital infrastructures and necessary cybersecurity support.
	Financial (e.g., breakdown, power outage, cloud access and data processing related failures, DDOS attacks)	Reduced learning time; lost teaching time	Vendor transparency and legal advice for educational technology procurement.
	Procurement	Litigation associated with vendor non-compliance or security breaches	Vendor transparency and legal advice for educational technology procurement.
Community (staff & students)	Over-surveillance	Loss of privacy and rights	Education community involved in decision-making about introduced technologies.
Pedagogy	Over-reliance on ed-tech systems, automated teaching	Teachers deskilling in core key parts of the profession	Ensuring professional expertise used and maintained in EdTech procurement processes; professional learning and support for technology-based practices.
	Over-control of teaching, surveillance, and prescribed workflows	Redefining autonomy, agency, and roles	Ensuring professional expertise used and maintained in EdTech procurement processes; professional learning and support for technology-based practices.
	Operational	Imposition of new external workflows reducing teacher innovation and increasing workload.	Explore alternatives that encourage teacher participation; strengthen school culture.
School	Strategic, reputational and duty of care	Commercial EdTech culture over local equity priorities	Explore alternatives with school community; reassess how school culture must adapt commercially to offer long-term benefits and avoid short-term solutions.
	Compliance and regulatory	Existing frameworks outdated and require careful assessment	Including diverse voices, consultation in decision-making and regulation.
	Sustainability and environment	Over-procurement of devices, increasing carbon footprint/waste; reliance on single-source outsourcing.	Ensuring that educational technology devices are reused properly; providing vendors with aligned ethical supply chain expectations.

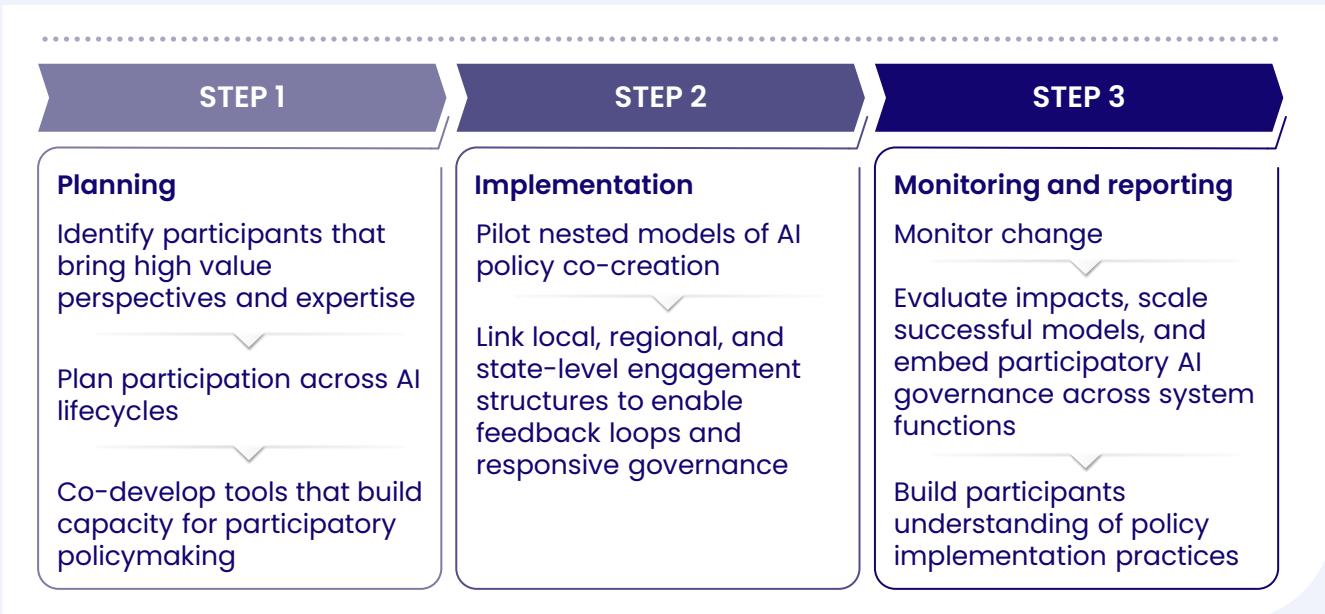
Participant mapping

A foundational step in implementing participatory methods is the systematic identification and inclusion of diverse actors, specialists, non-specialists, and lay participants, whose experiences and expertise reveal how AI may produce or mitigate inequity in educational settings. Historically marginalised groups are often those most affected by emerging technologies, and their inclusion is essential not only for equity but for epistemic completeness in policymaking.⁸²

Participant mapping enables policymakers to visualise and analyse the interests, influence, and interrelations of stakeholders involved in or affected by a policy issue. As demonstrated in participatory governance and policy network research,⁸³ these maps clarify power asymmetries, surface underrepresented voices, and guide strategic engagement. They can also help identify what is described as epistemic advantage, the unique insights that arise from lived experience and situated knowledge, especially among those often excluded from formal policy structures.⁸⁴

Used iteratively, participant maps support more inclusive, transparent, and context-responsive policy development by informing communication strategies, surfacing resistance early, and enabling more equitable coalitions for reform.

Groups	Examples	Roles and functions
Government and policy agencies	Federal Government departments	Set national education priorities, oversee equity programs, digital capability, AI strategy, and international obligations.
	State and territory education departments	Design and implement school curricula, teacher standards, AI and digital technology policies, and school infrastructure planning.
	Education standards and curriculum authorities	Develop curriculum frameworks, assessment standards, and policies on technology and digital capability.
	Government procurement and digital services agencies	Influence procurement, data governance, cyber security, and AI ethics frameworks applicable in schools.
	Privacy and human rights commissions	Oversee data protection, children's rights, and AI ethics enforcement relevant to digital learning environments.
Educational institutions and workforce	School leaders and principals	Operationalise policy at school level; manage EdTech adoption, staff capability, local procurement, and risk.
	Teachers and professional associations	Represent practitioner expertise, labour interests, ethical practice, and pedagogical concerns.
	School administrative and support staff	Manage digital infrastructure, data entry, and student wellbeing services.
	Higher education providers (faculties of education)	Train future teachers, contribute to curriculum and pedagogy research, and evaluate EdTech.
	TAFE and VET sector institutions	Deliver technical training, with distinct needs around access, equity, and digital infrastructure.



Groups	Examples	Roles and functions
Learners and families	Students (primary, secondary, tertiary)	Direct users and subjects of EdTech; their experiences shape legitimacy and trust in AI.
	Parents and caregivers	Gatekeepers to access; raise ethical, cultural, and safety concerns like screen time and data use.
	Parent associations and school boards	Influence local school decision-making and community engagement with curriculum and AI.
Community and civil society	Aboriginal and Torres Strait Islander communities and organisations	Ensure culturally responsive, place-based, and rights-aligned education technology and policies.
	Disability advocacy organisations	Provide expertise on accessibility, inclusive design, and algorithmic bias in learning environments.
	Multicultural and refugee advocacy organisations	Advocate for language access, cultural responsiveness, and representation in digital content.
	Youth and student advocacy groups	Support participatory policymaking and co-design of student-centred AI guidelines.
	Non-government organisations	Support equity, wraparound services, or ethical AI governance in education.
Industry and technology sector	EdTech companies and developers	Provide AI tools and platforms; shape implementation of EdTech in schools.
	Peak bodies and trade associations	Represent member interests and connect grassroots perspectives with government. Provide sector knowledge, coordinate consultations, and monitor policy outcomes.
	Infrastructure and telecommunications providers	Ensure connectivity, address the digital divide, and enable secure online access.
	Procurement and consulting firms	Influence system design, procurement, and pilot implementation of AI in education.
Research, standards and oversight bodies	Academic researchers and think tanks	Provide evidence on pedagogy, ethics, equity, and effectiveness of education policy.
	Professional standards and review agencies	Set teacher standards, evaluation frameworks, and coordinate nationally.
	Audit and assurance agencies	Audit spending, risk, and performance in tech and education initiatives.

Steps for practice

The workshops conducted during this study identified the following key steps for participatory policymaking to inform the use of AI in education.

Types of participation models

Process Type	Description	Engaged participants	Purpose/ outcome
Community feedback mechanisms	Surveys, focus groups, or forums that provide ongoing channels for community input on EdTech tools and policies.	Teachers, students, parents, school leaders, Indigenous communities, low-income families	Collect quantitative and qualitative data on the effectiveness and equity of EdTech tools. In-depth understanding of equity from multiple perspectives and their needs.
Pilot participatory audit programs	Small-scale trials of new EdTech initiatives before full deployment.	Select schools, teachers, students, EdTech developers	Test viability and impact of new participatory AI-audit model in real settings and gather insights for larger-scale rollouts.
Transparent reporting	Publishing audit and program evaluation results in accessible formats like dashboards or infographics.	General public, school communities, policymakers	Build public trust and accountability by providing clear insights into EdTech impacts and gaps.
Equity indicators development	Creating specific indicators to measure access, inclusion, and cultural relevance in EdTech applications.	Educational researchers, policymakers, school communities	Establish consistent frameworks to assess and improve equity in EdTech use across various demographics.

Process Type	Description	Engaged participants	Purpose/ outcome
Collaborative policy workshops	Co-design sessions with participants to review and develop EdTech-related policies.	Policymakers, school administrators, teachers, students, community representatives	Facilitate inclusive decision-making and address social biases in policy development.
Rotational audits	Rotating audit responsibilities across different groups or agencies to prevent bias.	Facilitate inclusive decision-making and address social biases in policy development.	Enhance objectivity in audits and ensure a broad range of perspectives inform evaluations.
Professional development for equity	Training sessions for educators on culturally responsive teaching and bias awareness.	Teachers, school leaders	Equip educators with skills to effectively use EdTech to close equity gaps in the classroom.
Policy feedback loops	Regular policy reviews informed by continuous audit data and stakeholder feedback.	Government officials, EdTech providers, school communities	Refine policies to adapt to emerging challenges and stakeholder needs over time.
Multistakeholder procurement	Involving representatives from diverse groups in procurement decisions for EdTech resources.	Government officials, school leaders, teachers, community representatives, EdTech suppliers	Ensure chosen technologies are aligned with the needs of all participants and foster fair resource allocation.

Role playing for building AI policy literacy and inclusive decision-making in education

Purpose

The role play game is designed to support collaborative, equity-focused AI policy design through simulated school-based scenarios. The game builds participants' understanding of AI technologies, fairness issues in education, and policy trade-offs, especially for students, teachers, and communities who are often excluded from formal policy processes.

Target audience

- High school and university students
- Teachers and school leaders
- Policymakers and education system leaders
- EdTech developers
- Researchers and community stakeholders

Game structure

Participants are divided into teams, each representing a fictional school based on real-world demographic profiles. Each team includes a mix of students, educators, researchers, and policymakers.

Step 1: Role assignment

Each player selects or is assigned a role (e.g. Principal, Student, Teacher, Parent, IT Manager, Community Representative)

Step 2: Scenario cards

Teams are presented with AI-in-education scenarios based on real products and use cases (e.g. facial recognition, AI-generated alt text, engagement monitoring). Each scenario highlights a fairness issue or potential harm.

Prompt: What are the equity concerns in this scenario? Who is affected and how?

Step 3: School-based policy design

Using a toolkit of possible policy actions, teams design responses to their scenario. Each team receives a resource budget that simulates funding constraints and school-specific conditions.

Policy options may include:

- Develop school-level guidelines for AI use
- Ban certain types of AI
- Provide teacher training on AI
- Offer non-AI alternatives
- Establish a student/parent consultation process
- Change how or where AI is used
- Constraint: Each option has a cost; schools have different budgets. Teams must prioritise and justify their decisions.

Step 4: System-level policy proposal

Teams consider how their policy ideas might scale beyond the school. They reflect on which issues require system-level action and propose changes to government or vendor policy.

Extension prompts:

- Who needs to be involved beyond the school?
- What mechanisms (e.g. legislation, oversight bodies, procurement rules) could help?
- How can youth voices remain central in ongoing policy discussions?

Facilitated reflection and debrief

- The session ends with a structured debrief, where players reflect in and out of role:
- What was learned about AI, fairness, and policymaking?
- What tensions emerged in deciding what is ‘fair’?
- How did playing a role change your perspective or limit what you could say?

Benefits

- Role playing games can support AI policy literacy, particularly around equity and resource trade-offs.
- Role-playing creates safe conditions for disagreement, enabling deeper deliberation.
- Youth voices are amplified when traditional hierarchies are softened through game mechanics.
- Participatory design must balance role-play with lived experience, ensuring authenticity is not lost in the process.

Further considerations

- Encourage a mix of in-character and out-of-role contributions to balance play and expertise.
- Use realistic budgets and constraints to simulate authentic decision-making.
- Embed the role playing games in broader participatory processes e.g. policy co-design forums or curriculum consultations.

Endnotes

¹ Wayne Holmes, Jen Persson, Irene-Angelica Chounta, Barbara Wasson and Vania Dimitrova, *Artificial Intelligence and Education: A Critical View Through the Lens of Human Rights, Democracy and the Rule of Law* (Brussels: Council of Europe, 2022).

² Greg Thompson, Kalervo Gulson and Teresa Swist, "Five Thoughtful Ways to Approach Artificial Intelligence in Schools", *EduResearch Matters*, 21 November 2022, <https://blog.aare.edu.au/five-thoughtful-ways-to-approach-artificial-intelligence-in-schools/> (accessed 3 July 2025).

³ Ulyana Paliychuk, "AI in EdTech Market Landscape: Stats, Opportunities, and Challenges", *Beetroot*, 13 October 2023, <https://beetroot.co/ai-ml/ai-in-edtech-market-landscape/>.

⁴ Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. Bernstein et al., "On the Opportunities and Risks of Foundation Models", *arXiv* (2021).

⁵ Australian Department of Education, Australian Framework for Generative Artificial Intelligence (AI) in Schools, <https://www.education.gov.au/schooling/resources/australian-framework-generative-artificial-intelligence-ai-schools> (accessed 3 July 2025).

⁶ Olivia Sidoti, Eugenie Park and Jeffrey Gottfried, "About a Quarter of U.S. Teens Have Used ChatGPT for Schoolwork – Double the Share in 2023", *Pew Research Center*, 15 January 2025, <https://www.pewresearch.org/short-reads/2025/01/15/about-a-quarter-of-us-teens-have-used-chatgpt-for-schoolwork-double-the-share-in-2023/>.

⁷ Elaine Moore, "How One Teenager Uses AI", *Financial Times*, 14 May 2025, <https://www.ft.com/content/fc3c9ecf-d0bc-43b0-8c3a-44cd7abfd908>.

⁸ Jérémie Sublime and Ilaria Renna, "Is ChatGPT massively used by students nowadays? A survey on the use of large language models such as ChatGPT in educational settings", *arXiv* (2024).

⁹ Selin Akgun and Christine Greenhow, "Artificial Intelligence in Education: Addressing Ethical Challenges in K-12 Settings", *AI and Ethics*, 2:3 (2022), 431-440.

¹⁰ Kalervo N. Gulson, Sam Sellar and P. Taylor Webb, *Algorithms of Education: How Datafication and Artificial Intelligence Shape Policy* (Minneapolis: University of Minnesota Press, 2022).

¹¹ UNESCO, AI and Education: Preserving Human Agency in a World of Automation, <https://unesdoc.unesco.org/ark:/48223/pf0000392508> (accessed 3 July 2025).

¹² ASEAN Secretariat, *ASEAN Guide on AI Governance and Ethics* (Jakarta: ASEAN Secretariat, 2024).

¹³ Australian Department of Finance, National Framework for the Assurance of Artificial Intelligence in Government, <https://www.finance.gov.au/government/public-data/data-and-digital-ministers-meeting/national-framework-assurance-artificial-intelligence-government> (accessed 3 July 2025).

¹⁴ Australian Department of Education, Australian Framework for Generative Artificial Intelligence (AI) in Schools, <https://www.education.gov.au/schooling/resources/australian-framework-generative-artificial-intelligence-ai-schools> (accessed 3 July 2025).

¹⁵ Kimberlee Weatherall, Paul Henman, Jose-Miguel Bello y Villarino, Rita Matulionyte, Lyndal Sleep and Melanie Trezise, *Automated Decision-Making in New South Wales: Mapping and Analysis of the Use of ADM Systems by State and Local Governments* (Melbourne: ARC Centre of Excellence for Automated Decision-Making and Society, 2024).

¹⁶ MIT RAISE, Securing Student Data in the Age of Generative AI, https://raise.mit.edu/wp-content/uploads/2024/06/Securing-Student-Data-in-the-Age-of-Generative-AI_MIT-RAISE.pdf (accessed 3 July 2025).

¹⁷ Eileen Guo, Gabriel Geiger and Justin-Casimir Braun, "Artificial intelligence: Inside Amsterdam's High-stakes Experiment to Create Fair Welfare AI", *Technology Review*, <https://www.technologyreview.com/2025/06/11/1118233/amsterdam-fair-welfare-ai-discriminatory-algorithms-failure/> (accessed 3 July 2025).

¹⁸ Council of Europe, "Explanatory Report: to the Council of Europe Framework Convention on Artificial Intelligence and Human Rights, Democracy and the Rule of Law", *Council of Europe Treaty Series*, 225 (2024).

¹⁹ Julian Thomas, Anthony McCosker, Sharon Parkinson, Kieran Hegarty, Daniel Featherstone, Jenny Kennedy, Indigo Holcombe-James, Lyndon Ormond-Parker and Lauren Ganley, *Measuring Australia's Digital Divide: Australian Digital Inclusion Index: 2023* (Melbourne: ARC Centre of Excellence for Automated Decision-Making and Society, RMIT University, Swinburne University of Technology, and Telstra, 2023).

²⁰ Samo Varsik and Lydia Vosberg, "The Potential Impact of Artificial Intelligence on Equity and Inclusion in Education", *OECD Artificial Intelligence Papers*, 23 (2024).

²¹ Julian Thomas, Anthony McCosker, Sharon Parkinson, Kieran Hegarty, Daniel Featherstone, Jenny Kennedy, Indigo Holcombe-James, Lyndon Ormond-Parker and Lauren Ganley, *Measuring Australia's Digital Divide: Australian Digital Inclusion Index: 2023* (Melbourne: ARC Centre of Excellence for Automated Decision-Making and Society, RMIT University, Swinburne University of Technology, and Telstra, 2023).

²² Australian Curriculum, Assessment and Reporting Authority, "Media Release: Latest Data Reveals Digital skills amongst Young Australians", 18 October 2023, <https://www.acara.edu.au/docs/default-source/media-releases/media-release-latest-data-reveals-digital-skills-amongst-young-australians.pdf>.

²³ Alexandra Bignell, "Intervention - Civil Society Round Table", 9 June 2025, https://pwd.org.au/ai-cognitive-disability-and-inclusive-governance/?utm_source=chatgpt.com (accessed 3 July 2025).

²⁴ Julian Thomas, Anthony McCosker, Sharon Parkinson, Kieran Hegarty, Daniel Featherstone, Jenny Kennedy, Indigo Holcombe-James, Lyndon Ormond-Parker and Lauren Ganley, *Measuring Australia's Digital Divide: Australian Digital Inclusion Index: 2023* (Melbourne: ARC Centre of Excellence for Automated Decision-Making and Society, RMIT University, Swinburne University of Technology, and Telstra, 2023).

²⁵ Daniel Featherstone, Lyndon Ormond-Parker, Leah Hawkins, Sharon Parkinson, Julian Thomas, Kieran Hegarty and Jenny Kennedy, *Mapping the Digital Gap: Wilcannia, NSW 2024 Community Update Report* (Melbourne: ARC Centre of Excellence for Automated Decision-Making and Society, 2025).

²⁶ Julian Thomas, Anthony McCosker, Sharon Parkinson, Kieran Hegarty, Daniel Featherstone, Jenny Kennedy, Indigo Holcombe-James, Lyndon Ormond-Parker and Lauren Ganley, *Measuring Australia's Digital Divide: Australian Digital Inclusion Index: 2023* (Melbourne: ARC Centre of Excellence for Automated Decision-Making and Society, RMIT University, Swinburne University of Technology, and Telstra, 2023).

²⁷ The Joint Council on Closing the Gap, 7B. Table B: Outcome 17, <https://www.closingthegap.gov.au/national-agreement/national-agreement-closing-the-gap/7-difference/b-targets/b17> (accessed 3 July 2025).

²⁸ Australian Institute for Teaching and School Leadership, "Evaluating the Evidence for Educational Technology: Part 1 – The Technologies", https://www.aitsl.edu.au/research/spotlights/evaluating-the-evidence-for-educational-technology-part-1-the-technologies?utm_source=chatgpt.com (accessed 3 July 2025); Areen Hazzan-Bishara, Ofrit Kol and Shalom Levy, "The Factors Affecting Teachers' Adoption of AI Technologies: A Unified Model of External and Internal Determinants", *Education and Information Technologies* (2025).

²⁹ Australian Institute for Teaching and School Leadership, "Evaluating the Evidence for Educational Technology: Part 1 – The Technologies", https://www.aitsl.edu.au/research/spotlights/evaluating-the-evidence-for-educational-technology-part-1-the-technologies?utm_source=chatgpt.com (accessed 3 July 2025); Rebecca J. Collie and Andrew J. Martin, "Teachers' Motivation and Engagement to Harness Generative AI for Teaching and Learning: The Role of Contextual, Occupational, and Background Factors", *Computers and Education: Artificial Intelligence* (2024), 1-10.

³⁰ Leslie Loble and Aurora Hawcroft, *Shaping AI and Edtech to Tackle Australia's Learning Divide* (Sydney: UTS and Paul Ramsay Foundation, 2022); Marta Montenegro-Rueda, José Fernández-Cerero, José María Fernández-Batanero and Eloy López-Meneses, "Impact of the Implementation of ChatGPT in Education: A Systematic Review", *Computers*, 12:8 (2023), 1-13.

³¹ Katy Ilonka Gero, Vivian Liu and Lydia Chilton, "Sparks: Inspiration for Science Writing using Language Models", *Proceedings of the 2022 ACM Designing Interactive Systems Conference* (2022), 1002-1019.

³² Rena Li, Sara Kingsley, Chelsea Fan, Proteeti Sinha, Nora Wai, Jaimie Lee, Hong Shen, Motahhare Eslami, and Jason Hong, "Participation and Division of Labor in User-Driven Algorithm Audits: How Do Everyday Users Work together to Surface Algorithmic Harms?", *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*, 567 (2023), 1-19.

³³ Bronwyn Cumbo and Neil Selwyn, "Using Participatory Design Approaches in Educational Research", *International Journal of Research & Method in Education*, 45:1 (2022), 60-72.

³⁴ Michel Callon, Pierre Lascoumes and Yannick Barthe, *Inside Technology Acting in an Uncertain World: An Essay on Technical Democracy* (Cambridge and London: The MIT Press, 2009).

³⁵ Katie Salen Tekinbas and Eric Zimmerman, *Rules of Play: Game Design Fundamentals* (Cambridge and London: MIT Press Academic, 2003).

³⁶ Toshiyuki Kaneda, Ryoji Hamada and Terukazu Kumazawa, *Simulation and Gaming for Social Design* (Singapore: Springer, 2021); Matthew Whitby, Feng Mao, Katarzyna Stawarz, Shasta Marrero and Jo Lindsay Walton, *Serious Games Cookbook: A Beginner's Guide to Using and Designing Serious Games* (Coventry: University of Warwick Press, 2024).

³⁷ Kalervo Gulson, Claire Benn, Kirsty Kitto, Simon Knight and Teresa Swist, "Algorithms Can Decide Your Marks, Your Work Prospects and Your Financial Security. How Do You Know They're Fair?", *The Conversation*, 22 November 2021, <https://theconversation.com/algorithms-can-decide-your-marks-your-work-prospects-and-your-financial-security-how-do-you-know-theyre-fair-171590>; Karen Hao and Jonathan Stray, "Artificial Intelligence: Can You Make AI Fairer Than a Judge? Play Our Courtroom Algorithm Game," *Technology Review*, 17 October 2019, <https://www.technologyreview.com/2019/10/17/75285/ai-fairer-than-judge-criminal-risk-assessment-algorithm/> (accessed 3 July 2025); Simon Knight, Antonette Shibani, Heather Ford and Simon Chambers, "Inverting {{Citation Needed}}: Critical Design Reflection of a Citation Learning Game", *Learning, Media and Technology*, 49: 4 (2023), 639-655; Jonathan Stray and Karen Hao, "Interactive Visualization of Fairness Tradeoffs", https://bpb-us-el.wpmucdn.com/sites.northeastern.edu/dist/0/367/files/2019/11/CJ_2020_paper_70.pdf (accessed 3 July 2025); Teresa Swist, Kalervo N. Gulson, Claire Benn, Kirsty Kitto, Simon Knight and Vincent Zhang, "A Technical Democracy Design Experiment: Making the UK Exam Algorithm Controversy Game", *Design Studies*, 91-92 (2024), 1-19.

³⁸ Igor S. Maye, "The Gaming of Policy and the Politics of Gaming: A Review", *Simulation & Gaming*, 40:6 (2009), 825-862.

³⁹ Janot Mendler de Suarez, Pablo Suarez, Carina Bachofen, Nick Fortugno, Jarrod Goentzel, Paulo Gonçalves, Natasha Grist, Colleen Macklin, Kimberly Pfeifer, Sarah Schweizer, Maarten van Aalst and Hassan Virji, *Games for a New Climate: Experiencing the Complexity of Future Risks. Pardee Center Task Force Report* (Boston: Boston University, 2012).

⁴⁰ Michel Callon, Pierre Lascoumes and Yannick Barthe, *Inside Technology Acting in an Uncertain World: An Essay on Technical Democracy* (Cambridge and London: The MIT Press, 2009).

⁴¹ Jason Chilvers and Matthew Kearnes, "Remaking Participation in Science and Democracy", *Science, Technology, & Human Values*, 45:3 (2020), 347-380; Archon Fung, "Is Democracy Too Much Trouble in a Pandemic?", in Graham Smith, Tim Hughes, Lizzie Adams, Charlotte Obijiaku (eds.), *Democracy in a Pandemic: Participation in Response to Crisis* (London: University of Westminster Press, 2021), 169-182.

⁴² John S. Dryzek, Quinlan Bowman, Jonathan Kuyper, Jonathan Pickering, Jensen Sass and Hayley Stevenson, *Deliberative Global Governance* (Cambridge: Cambridge University Press, 2019).

⁴³ Simon Knight, Camille Dickson-Deane, Keith Heggart, Kirsty Kitto, Dilek Çetindamar Kozanoğlu, Damian Maher, Bhava Narayan and Forooq Zarrabi, "Generative AI in the Australian Education System: An Open Data Set of Stakeholder Recommendations and Emerging Analysis from a Public Inquiry", *Australasian Journal of Educational Technology*, 39:5 (2023), 101-124.

⁴⁴ Greg Thompson, Kalervo Gulson and Teresa Swist, "Five Thoughtful Ways to Approach Artificial Intelligence in Schools", *EduResearch Matters*, 21 November 2022, <https://blog.aare.edu.au/five-thoughtful-ways-to-approach-artificial-intelligence-in-schools/>; Simon Knight, Cormac McGrath, Olga Viberg and Teresa Cerratto Pargman, "Learning About AI Ethics from Cases: A Scoping Review of AI Incident Repositories and Cases", *AI and Ethics*, 5:3 (2025), 2037-2053; Teresa Swist, Kalervo N. Gulson and Greg Thompson, "Education Prototyping: A Methodological Device for Technical Democracy", *Postdigital Science and Education*, 6 (2023), 342-359.

⁴⁵ Jason Chilvers and Matthew Kearnes, *Remaking Participation: Science, Environment and Emergent Publics* (London: Routledge, 2016).

⁴⁶ Sina Fazelpour and Will Fleisher, "The Value of Disagreement in AI Design, Evaluation, and Alignment", *arXiv* (2025).

⁴⁷ Archon Fung, "Is Democracy Too Much Trouble in a Pandemic?", in Graham Smith, Tim Hughes, Lizzie Adams, Charlotte Obijiaku (eds.), *Democracy in a Pandemic: Participation in Response to Crisis* (University of Westminster Press, 2021), 169-182.

⁴⁸ Jason Chilvers and Matthew Kearnes, *Remaking Participation: Science, Environment and Emergent Publics* (London: Routledge, 2016).

⁴⁹ John S. Dryzek, Quinlan Bowman, Jonathan Kuyper, Jonathan Pickering, Jensen Sass and Hayley Stevenson, *Deliberative Global Governance* (Cambridge: Cambridge University Press, 2019).

⁵⁰ Sina Fazelpour and Will Fleisher, "The Value of Disagreement in AI Design, Evaluation, and Alignment", *arXiv* (2025).

⁵¹ Archon Fung, "Is Democracy Too Much Trouble in a Pandemic?", in Graham Smith, Tim Hughes, Lizzie Adams, Charlotte Obijiaku (eds.), *Democracy in a Pandemic: Participation in Response to Crisis* (University of Westminster Press, 2021), 169-182.

⁵² Jason Chilvers and Matthew Kearnes, *Remaking Participation: Science, Environment and Emergent Publics* (London: Routledge, 2016).

⁵³ Archon Fung, "Is Democracy Too Much Trouble in a Pandemic?", in Graham Smith, Tim Hughes, Lizzie Adams, Charlotte Obijiaku (eds.), *Democracy in a Pandemic: Participation in Response to Crisis* (University of Westminster Press, 2021), 169-182.

⁵⁴ John S. Dryzek, Quinlan Bowman, Jonathan Kuyper, Jonathan Pickering, Jensen Sass and Hayley Stevenson, *Deliberative Global Governance* (Cambridge: Cambridge University Press, 2019).

⁵⁵ Sina Fazelpour and Will Fleisher, "The Value of Disagreement in AI Design, Evaluation, and Alignment", *arXiv* (2025).

⁵⁶ Archon Fung, "Is Democracy Too Much Trouble in a Pandemic?", in Graham Smith, Tim Hughes, Lizzie Adams, Charlotte Obijiaku (eds.), *Democracy in a Pandemic: Participation in Response to Crisis* (University of Westminster Press, 2021), 169-182.

⁵⁷ John S. Dryzek, Quinlan Bowman, Jonathan Kuyper, Jonathan Pickering, Jensen Sass and Hayley Stevenson, *Deliberative Global Governance* (Cambridge: Cambridge University Press, 2019); Archon Fung, "Is Democracy Too Much Trouble in a Pandemic?", in Graham Smith, Tim Hughes, Lizzie Adams, Charlotte Obijiaku (eds.), *Democracy in a Pandemic: Participation in Response to Crisis* (University of Westminster Press, 2021), 169-182.

⁵⁸ Simon Knight, Camille Dickson-Deane, Keith Heggart, Kirsty Kitto, Dilek Çetindamar Kozanoğlu, Damian Maher, Bhava Narayan and Forooq Zarrabi, "Generative AI in the Australian Education System: An Open Data Set of Stakeholder Recommendations and Emerging Analysis from a Public Inquiry", *Australasian Journal of Educational Technology*, 39:5 (2023), 101-124.

⁵⁹ Kalervo N. Gulson, Sam Sellar and P. Taylor Webb, *Algorithms of Education: How Datafication and Artificial Intelligence Shape Policy* (Minneapolis: University of Minnesota Press, 2022); Teresa Swist, Kalervo N. Gulson, Claire Benn, Kirsty Kitto, Simon Knight and Vincent Zhang, "A Technical Democracy Design Experiment: Making the UK Exam Algorithm Controversy Game", *Design Studies*, 91-92 (2024), 1-19.

⁶⁰ Jason Chilvers and Matthew Kearnes, *Remaking Participation: Science, Environment and Emergent Publics* (London: Routledge, 2016); Sina Fazelpour and Will Fleisher, "The Value of Disagreement in AI Design, Evaluation, and Alignment", *arXiv* (2025).

⁶¹ Yueqi Li and Sanjay Goel, "Making It Possible for the Auditing of AI: A Systematic Review of AI Audits and AI Auditability", *Information Systems Frontiers*, 27 (2024), 1121–1151.

⁶² John M Bryson, "What to Do When Stakeholders Matter", *Public Management Review*, 6:1 (2004), 21–53.

⁶³ Michel Callon, Pierre Lascoumes and Yannick Barthe, *Inside Technology Acting in an Uncertain World: An Essay on Technical Democracy* (Cambridge and London: The MIT Press, 2009); Yueqi Li and Sanjay Goel, "Making It Possible for the Auditing of AI: A Systematic Review of AI Audits and AI Auditability", *Information Systems Frontiers* 27 (2024), 1121–1151.

⁶⁴ Simon Knight, Camille Dickson-Deane, Keith Heggart, Kirsty Kitto, Dilek Çetindamar Kozanoğlu, Damian Maher, Bhuvan Narayan and Forooq Zarabi, "Generative AI in the Australian Education System: An Open Data Set of Stakeholder Recommendations and Emerging Analysis from a Public Inquiry", *Australasian Journal of Educational Technology*, 39:5 (2023), 101–124; Teresa Swist, Kalervo N. Gulson, Claire Benn, Kirsty Kitto, Simon Knight and Vincent Zhang, "A Technical Democracy Design Experiment: Making the UK Exam Algorithm Controversy Game", *Design Studies*, 91–92 (2024), 1–19.

⁶⁵ Jason Chilvers and Matthew Kearnes, *Remaking Participation: Science, Environment and Emergent Publics* (London: Routledge, 2016); Sina Fazelpour and Will Fleisher, "The Value of Disagreement in AI Design, Evaluation, and Alignment", *arXiv* (2025).

⁶⁶ Australian Department of Education, Skills and Employment, *The Alice Springs (Mparntwe) Education Declaration* (Australia: Department of Education, 2019); Kalervo N. Gulson, Sam Sellar and P. Taylor Webb, *Algorithms of Education: How Datafication and Artificial Intelligence Shape Policy* (Minneapolis: University of Minnesota Press, 2022).

⁶⁷ John S. Dryzek, Quinlan Bowman, Jonathan Kuyper, Jonathan Pickering, Jensen Sass and Hayley Stevenson, *Deliberative Global Governance* (Cambridge: Cambridge University Press, 2019).

⁶⁸ Sina Fazelpour and Will Fleisher, "The Value of Disagreement in AI Design, Evaluation, and Alignment", *arXiv* (2025); Kalervo N. Gulson, Sam Sellar and P. Taylor Webb, *Algorithms of Education: How Datafication and Artificial Intelligence Shape Policy* (Minneapolis: University of Minnesota Press, 2022).

⁶⁹ Teresa Swist, Kalervo N. Gulson, Claire Benn, Kirsty Kitto, Simon Knight and Vincent Zhang, "A Technical Democracy Design Experiment: Making the UK Exam Algorithm Controversy Game", *Design Studies*, 91–92 (2024), 1–19.

⁷⁰ Jason Chilvers and Matthew Kearnes, "Remaking Participation in Science and Democracy", *Science, Technology & Human Values*, 45:3 (2020), 347–380; Simon Knight, Camille Dickson-Deane, Keith Heggart, Kirsty Kitto, Dilek Çetindamar Kozanoğlu, Damian Maher, Bhuvan Narayan and Forooq Zarabi, "Generative AI in the Australian Education System: An Open Data Set of Stakeholder Recommendations and Emerging Analysis from a Public Inquiry", *Australasian Journal of Educational Technology*, 39:5 (2023), 101–124.

⁷¹ Jason Chilvers and Matthew Kearnes, "Remaking Participation in Science and Democracy", *Science, Technology & Human Values*, 45:3 (2020), 347–380; Archon Fung, "Is Democracy Too Much Trouble in a Pandemic?", in Graham Smith, Tim Hughes, Lizzie Adams, Charlotte Objiaku (eds.), *Democracy in a Pandemic: Participation in Response to Crisis* (London: University of Westminster Press, 2021), 169–182.

⁷² John S. Dryzek, Quinlan Bowman, Jonathan Kuyper, Jonathan Pickering, Jensen Sass and Hayley Stevenson, *Deliberative Global Governance* (Cambridge: Cambridge University Press, 2019).

⁷³ Simon Knight, Camille Dickson-Deane, Keith Heggart, Kirsty Kitto, Dilek Çetindamar Kozanoğlu, Damian Maher, Bhuvan Narayan and Forooq Zarabi, "Generative AI in the Australian Education System: An Open Data Set of Stakeholder Recommendations and Emerging Analysis from a Public Inquiry", *Australasian Journal of Educational Technology*, 39:5 (2023), 101–124; Teresa Swist, Kalervo N. Gulson, Claire Benn, Kirsty Kitto, Simon Knight and Vincent Zhang, "A Technical Democracy Design Experiment: Making the UK Exam Algorithm Controversy Game", *Design Studies*, 91–92 (2024), 1–19.

⁷⁴ Sina Fazelpour and Will Fleisher, "The Value of Disagreement in AI Design, Evaluation, and Alignment", *arXiv* (2025).

⁷⁵ Michel Callon, Pierre Lascoumes and Yannick Barthe, *Inside Technology Acting in an Uncertain World: An Essay on Technical Democracy* (Cambridge and London: The MIT Press, 2009); Matthew Whitby, Feng Mao, Katarzyna Stawarz, Shasta Marrero and Jo Lindsay Walton, *Serious Games Cookbook: A Beginner's Guide to Using and Designing Serious Games* (Coventry: University of Warwick Press, 2024).

⁷⁶ Yueqi Li and Sanjay Goel, "Making It Possible for the Auditing of AI: A Systematic Review of AI Audits and AI Auditability", *Information Systems Frontiers*, 27 (2024), 1121–1151

⁷⁷ Leslie Loble and Kelly Stephens, *Securing Digital Equity in Australian Education* (Sydney: University of Technology Sydney, 2024).

⁷⁸ Kalervo N. Gulson, Sam Sellar and P. Taylor Webb, *Algorithms of Education: How Datafication and Artificial Intelligence Shape Policy* (Minneapolis: University of Minnesota Press, 2022).

⁷⁹ Jason Chilvers and Matthew Kearnes, "Remaking Participation in Science and Democracy", *Science, Technology & Human Values*, 45:3 (2020), 347–380; Teresa Swist, Kalervo N. Gulson, Claire Benn, Kirsty Kitto, Simon Knight and Vincent Zhang, "A Technical Democracy Design Experiment: Making the UK Exam Algorithm Controversy Game", *Design Studies*, 91–92 (2024), 1–19.

⁸⁰ Yueqi Li and Sanjay Goel, "Making It Possible for the Auditing of AI: A Systematic Review of AI Audits and AI Auditability", *Information Systems Frontiers*, 27 (2024), 1121–1151.

⁸¹ Daniel S Schiff, Stephanie Kelley and Javier Camacho, "The Emergence of Artificial Intelligence Ethics Auditing", *Big Data & Society*, 11:4 (2024).

⁸² Miranda Fricker, *Epistemic Injustice: Power and the Ethics of Knowing* (New York: Oxford University Press, 2007); Simon Knight, Cormac McGrath, Olga Viberg and Teresa Cerratto Pargman, "Learning About AI Ethics from Cases: A Scoping Review of AI Incident Repositories and Cases", *AI and Ethics*, 5:3 (2025), 2037–2053.

⁸³ John M Bryson, "What to Do When Stakeholders Matter", *Public Management Review*, 6:1 (2004), 21–53.

⁸⁴ Simon Knight, Camille Dickson-Deane, Keith Heggart, Kirsty Kitto, Dilek Çetindamar Kozanoğlu, Damian Maher, Bhuvan Narayan and Forooq Zarabi, "Generative AI in the Australian Education System: An Open Data Set of Stakeholder Recommendations and Emerging Analysis from a Public Inquiry", *Australasian Journal of Educational Technology*, 39:5 (2023), 101–124.

Good public policy starts with evidence.

Level 7, Castlereagh Street
Sydney, NSW 2000 Australia

E info@appi.org.au | w appi.org.au

THE UNIVERSITY OF
SYDNEY

WESTERN SYDNEY
UNIVERSITY

UTS

UNSW
SYDNEY

Charles Sturt
University

UNIVERSITY
OF WOLLONGONG
AUSTRALIA

THE UNIVERSITY OF
MELBOURNE